HPC Challenge 2014
PCJ Benchmarks
(Parallel Computing in Java)

Marek Nowicki, Lukasz Gorski, Piotr Bala

bala@icm.edu.pl

N. Copernicus University, Torun, Poland
ICM - University of Warsaw, Warsaw, Poland

Parallel computing in Java — challenges g 11!

= Parallel programming is still difficult especially while
traditional programming paradigms are used

= There is need for new programing paradigms such as
Partitioned Global Address Space (PGAS)

= HPC marked has to open for new languages widely used
for data analysis such as Java

= Parallel programming in Java is either threads or fork/join
and is limited to a single JVM

= There has been number of parallel extensions to Java
however none of them become popular

2 HPCC BoF SC14 18/11/2014 Piotr Bata

PCJ - Parallel Computations in Java

Java library developed at ICM

" pcj.icm.edu.pl

Programming paradigm:

= partitioned global address space (PGAS)
= all variables are local by default

= variables can be global (@Shared)

= one sided communication (put, get)
Features

= does not require modification of JVM

= does not require other libraries!

= works on almost all operating system that have JVM
= uses newest Java SE 7 (NIO, SDP, . . .)

3 HPCC BoF SC14 18/11/2014 Piotr Bata

PCJ - Parallel Computations in Java

Basic functionality of PCJ:
= tasks numbering

= synchronization of tasks

= getting values

= putting values

Advanced functionality:

= broadcasting values

= monitoring variables

= parallel I/0

= creating groups of nodes
= working with groups.

4 HPCC BoF SC14 18/11/2014 Piotr Bata

PCJ - Hello world g m

import org.pcj.”
public class PcjHelloWorld extends Storage
implements StartPoint {

@Override

public void main() {
System.out.printin("Hello!");

}

public static void main(String[] args) {

String[] nodes = new String[]{"localhost", "localhost"};
PCJ.deploy(PcjHelloWorld.class,

PcjHelloWorld.class, nodes);

}
}

5 HPCC BoF SC14 18/11/2014 Piotr Bata

PCJ - basics g 11

@Shared double a;
double c;

if (PCJ.myld()==0) c =(double) PCJ.get(3, "a");

FutureObject alL[] = new FutureObject[PCJ.threadCount()];
if (PCJ.myld()==0) aL[p] = PCJ.getFutureObject(p, "a");
c =(double) aL[p].get();

if (PCJ.myld()==0) PCJ.put(3, "a", 5.0);

public static void PCJ.barrier();
public static int PCJ.threadCount()

6 HPCC BoF 5C14 18/11/2014 Piotr Bata

PCJ - Reduction

@Shared double a
FutureObject aL[] = new FutureObject[PCJ.threadCount()];
double a0 = 0.0;
if (PCJ.myld() == 0) {
for (int p = 0; p < PCJ.threadCount(); p++) {
aL[p] = PCJ.getFutureObject(p, "a");
}
for (int p = 0; p < PCJ.threadCount(); p++) {
a0 = a0 + (double) aL[p].get();

}
}

7 HPCC BoF 5C14 18/11/2014 Piotr Bata

HPC Challenge PCJ benchmarks

HPC Benchmarks

= STREAM 180 LOC
= Random Access 146 LOC
= GlobalFFT 1D 498 LOC

Our benchmarks

= MapReduce 126 LOC

= RayTracing 1627 LOC (incl. 100 comment lines)
52 PCJ calls, incl. 35 log statements

long sum = 0;
for (User user : users) { um += user.getAge (); }
double average = (double) sum / users.size ();

8 HPCC BoF SC14 18/11/2014 Piotr Bata

MapReduce - Java

= Java
long sum = 0;
for (User user : users) {
um += user.getAge ();

}

double average = (double) sum / users.size ();

= Java 8 parallel streams
long sum = users.parallelStream ()
.map (u -> (long) u. getAge ())
.reduce (Long :: sum)
.get ();
double average = (double) sum / users.size ();

9 HPCC BoF 5C14 18/11/2014 Piotr Bata

MapReduce - PCJ

@Shared long sum ;
@Shared int usersCount ;

myUsers = loadUsers(PCJ.myld ());
long s = 0;
for (User u : myUsers) {
s += u. getAge ();
}
PCJ.putLocal ("sum", s); /l The same for size
PCJ.barrier ();
s = pcj_reduce ("sum");
double average = (double) s / count ;

10 HPCC BoF SC14 18/11/2014 Piotr Bata

PCJ performance — STREAM

! ! I I ! !

halo2 =——i—

halo2 C OpenMP ———
halo2 F90 MP| —¢— -
boreasz =——a—

boreasz C OpenMP ———
1e+006 - boreasz F90 MPl ——

100000

Stream [MB/s]

10000

| | | ! |
1 - 16 64 256 1024

Number of cores
11 HPCC BoF SC14 18/11/2014 Piotr Bata

PCJ performance — Random Access

| | | | | |
halo2 —a—
hydra =
boreasz —— /
1 "~ _
o
)
o
)
O,
w
w
[¢}}
(&)
<
£
o
T
G
w 01 =
0.01 | | | | | |
1 4 16 64 256 1024

Number of cores
12 HPCC BoF SC14 18/11/2014 Piotr Bata

PCJ performance — Global FFT

| | | | I
halo2 ==
hydra =

boreasz =i

©
-
|
|

GlobalFFT [Gflops/s]

001 L | | | | |
1 B 16 64 256 1024

Number of cores
13 HPCC BoF SC14 18/11/2014 Piotr Bata

PCJ performance — Raytracer

halo2 =i
hydra =
boreasz ==
1e+006 -

Efficiercy [px/s]

100000 |

10000 . l l | l
1 4 16 64 256 1024

Number of cores
14 HPCC BoF SC14 18/11/2014 Piotr Bata

PCJ performance — MapReduce

MapRedLce [s]

halo2 =it
hydra =
boreasz ==
001 | | | | | |
1 4 16 64 256 1024
Number of cores
Piotr Bata

15 HPCC BoF SC14 18/11/2014

PCJ for HPC and BigData

= For single node PCJ performance is competitive compare
to Java 8 parallel streams

= PCJ performance is competitive compare to standard
solutions based on MP|

= PCJ runs on multiple nodes (multiple JVM)

= PCJ has very good scalability and has been run on 10k
cores

= PCJ can be used to parallelize data analysis codes written
In Java

16 HPCC BoF SC14 18/11/2014 Piotr Bata

HPDCJ Project (CHIST-ERA)

Heterogenous parallel and distributed computing with Java

=Partners
* ICM University of Warsaw (Warsaw, Poland)
* IBM Research Lab (Zurich, Switzerland)
* Queen's University of Belfast (Belfast, UK)
« Bilkent Universitesi (Ankara, Turkey)
*Focus

» ease of use and programmability of Java for distributed
heterogeneous computing

* heterogeneous systems including GPU and mobile devices
» dependability and resilience by adding fault tolerance mechanisms
« key applications including data-intensive Big Data applications

=1st October 2014 — 31t September 2017
"pcj.icm.edu.pl/hpdcj

17 HPCC BoF SC14 18/11/2014 Piotr Bata

m

pcj.icm.edu.pl

Piotr Bata (ICM University of Warsaw) bala@icm.edu.pl
Marek Nowicki (WMil UMK)
tukasz Gorski (WMil UMK)

