
John Mellor-Crummey, Laksono Adhianto
Mark Krentel, Guohua Jin, Karthik Murthy,

William Scherer III, Chaoran Yang
Department of Computer Science

Rice University

2011 HPC Challenge Class II Submission:
Coarray Fortran 2.0

Center for Scalable Application Development Software

SC 2011

2

Coarray Fortran (CAF)

• Global address space SPMD parallel programming model
—one-sided communication

• Simple, two-level memory model for locality management
—local vs. remote memory

• Programmer has control over performance critical decisions
—data partitioning
—data movement
—synchronization

• Adopted in Fortran 2008 standard

P0

A(1:50)[0]

B(1:40)

P1

A(1:50)[1]

B(1:40)

A(1:50)[3]

B(1:40)

A(1:50)[2]

B(1:40)

P2 P3

Global view

Local view

3

Coarray Fortran 2.0 (CAF 2.0)

• Teams: process subsets, like MPI communicators
—formation using team_split (like MPI_Comm_split)
—collective communication (two-sided)
—barrier synchronization

• Coarrays: shared data allocated across processor subsets
—declaration: double precision :: a(:,:)[*]
—dynamic allocation: allocate(a(n,m)[@row_team])
—access: x(:,n+1) = x(:,0)[mod(team_rank()+1, team_size())]

• Latency tolerance
—hide: asynchronous copy, asynchronous collectives
—avoid: function shipping

• Synchronization
—event variables: point-to-point sync; async completion
—finish: SPMD construct inspired by X10

• Copointers: pointers to remote data

CAF 2.0
Features

Fortran
2008

Our HPC Challenge Goal: Productivity

• Priorities, in order
—performance, performance, performance
—source code volume

• Productivity = performance / (lines of code)
• Implications for our implementations

—FFT (revised implementation for this year)
– use global transposes to keep computation local

—EP STREAM Triad
– outline a loop for best compiler optimization

—Randomaccess
– batch updates and use software routing for higher performance

—HPL
– operate on blocks to leverage a high performance DGEMM

—Unbalanced Tree Search (UTS)
– evaluate how CAF 2.0 supports dynamic load balancing
– use function shipping to implement work stealing and work sharing

4

Relative Parallel Efficiency

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

64 256 1024 4096 8192

1 0.99

0.91

0.75

0.59

1

0.75

0.54

0.39

1.00

0.85

0.63

0.44 0.42

1.00 0.99 0.99 1.00 0.99

1.00

0.94

0.87

0.79

number of cores

re
la

tiv
e

pa
ra

lle
l e

ffi
ci

en
cy

EP STREAM Triad

HPL

FFT
Randomaccess

UTS

Productivity = Performance / SLOC
Performance (on Cray XT4 and XT5)

Source lines of code

6

Notes
• STREAM: 82% of peak

memory bandwidth
• HPL: 49% of FP peak at

4096 cores (uses dgemm)
• Issues with GASNet 1.17

runtime for 4K and more
processors on XE6

of
cores

STREAM Triad*
(TByte/s)

RandomAccess‡
(GUP/s)

Global HPL†
(TFlop/s)

Global FFT†
(GFlop/s)

UTS*
(MNode/s)

64 0.17 0.08 0.36 6.69 163.1
256 0.67 0.24 1.36 22.82 645.0

1024 2.66 0.69 4.99 67.80 2371
4096 10.70 2.01 18.3 187.04 7818
8192 21.69 357.80 12286

HPC Challenge Benchmark

*Jaguar - XT5 ‡Jaguar - XT4 †Franklin - XT4

Benchmark Source
Lines

Reference
SLOC Reduction

Randomaccess 409 787 48%
EP STREAM 63 329 81%
Global HPL 786 8800 91%
Global FFT 450 1130 60%

UTS 544 n/a n/a

Unbalanced Tree Search (UTS)

• Exploration of an unbalanced implicit tree

• Fixed geometric distribution,
depth 18, 270 billion nodes

7

 ! while there is work to do
 do while(queue_count .gt. 0)
 call dequeue_back(descriptor)
 call process_work(descriptor)
 ...
 ! check if someone needs work
 if ((incoming_lifelines .ne. 0) .and. &
 (queue_count .ge. lifeline_threshold)) then
 call push_work()
 endif
 enddo

 ! attempt to steal work from another image
 victim = get_random_image()

 spawn steal_work()[victim]

 ! set up lifelines on hypercube neighbors
 do index = 0, max_neighbor_index-1
 neighbor = xor(my_rank, 2**index)
 spawn set_lifelines(my_rank, index)[neighbor]
 enddo

• Slope shows all PE working
• Tight grouping of lines shows

good load balance

Separate line for
each of 128 PEs

Total nodes
processed per PE

Cray XT5,
12 cores/node

• Radix 2 FFT implementation

• Block distribution of coarray “c” across all processors

• Sketch in CAF 2.0:
 complex, allocatable :: c(:,2)[*], spare(:)[*]
 ...
 ! permute data to bit-reversed indices (uses team_alltoall)
 call bitreverse(c, n_world_size, world_size, spare)

 ! local FFT computation for levels that fit in the memory of an image
 do l = 1, loc_comm-1 ...

 ! transpose from block to cyclic data distribution (uses team_alltoall)
 call transpose(c, n_world_size, world_size, spare)

 ! local FFT computation for remaining levels
 do l = loc_comm, levels ...

 ! transpose back from cyclic to block data distribution (uses team_alltoall)
 call transpose(c, n_world_size, n_local_size/world_size,spare)

FFT

8

double precision, allocatable :: a(:)[*], b(:)[*], c(:)[*]

...

! each processor in the default team allocates their own array parts
allocate(a(local_n)[], b(local_n)[], c(local_n)[])

...

! perform the calculation repeatedly to get reliable timings
do round = 1, rounds
 do j = 1, rep
 call triad(a,b,c,local_n,scalar)
 end do
 call team_barrier() ! synchronous barrier across images in the default team
end do

...

! perform the calculation with top performance
! assembly code is identical to that for sequential Fortran
subroutine triad(a, b, c, n ,scalar)
 double precision :: a(n), b(n), c(n), scalar
 a = b + scalar * c ! EP triad as a Fortran 90 vector operation
end subroutine triad

EP STREAM Triad

9

2

1

 event, allocatable :: delivered(:)[*],received(:)[*] !(stage)
 integer(i8), allocatable :: fwd(:,:,:)[*] ! (#,in/out,stage)
 ...
 ! hypercube-based routing: each processor has 1024 updates
 do i = world_logsize-1, 0, -1 ! log P stages in a route
 ...
 call split(retain(:,last), ret_sizes(last), &
 retain(:,current), ret_sizes(current), &
 fwd(1:,out,i), fwd(0,out,i), bufsize, dist)

 if (i < world_logsize-1) then
 event_wait(delivered(i+1))
 call split(fwd(1:,in,i+1), fwd(0,in,i+1), &
 retain(:,current), ret_sizes(current), &
 fwd(1:,out,i), fwd(0,out,i), bufsize, dist)
 event_notify(received(i+1)[from]) ! signal buffer is empty
 endif

 count = fwd(0,out,i)
 event_wait(received(i)) ! ensure buffer is empty from last route
 fwd(0:count,in,i)[partner] = fwd(0:count,out,i) ! send to partner
 event_notify(delivered(i)[partner]) ! notify partner data is there
 ...
 end do

Randomaccess Software Routing

10

• Block-cyclic data distribution
• Team based collective operations along rows and columns

—synchronous max reduction down columns of processors
—asynchronous broadcast of panels to all processors
type(paneltype) :: panels(1:NUMPANELS)

 event, allocatable :: delivered(:)[*]
 ...
 do j = pp, PROBLEMSIZE - 1, BLKSIZE
 cp = mod(j / BLKSIZE, 2) + 1
 ...
 event_wait(delivered(3-cp))
 ...
 if (mycol == cproc) then
 ...
 if (ncol > 0) ... ! update part of the trailing matrix
 call fact(m, n, cp) ! factor the next panel
 ...
 endif
 call team_broadcast_async(panels(cp)%buff(1:ub), panels(cp)%info(8), &

 delivered(cp))
 ! update rest of the trailing matrix
 if (nn-ncol>0) call update(m, n, col, nn-ncol, 3 - cp)
 ...
 end do

HPL

11

PROBLEMSIZE0

BLKSIZE

pp

Experimental Setup

• Rice Coarray Fortran 2.0
—source to source translation from CAF 2.0 to Fortran 90

– generated code compiled with Portland Group’s pgf90
—CAF 2.0 runtime system built upon GASNet (versions 1.14 .. 1.17)
—scalable implementation of teams, using O(log P) storage

• Experimental platforms: Cray XT4, XT5, and XE6
—systems

– Franklin - XT4 at NERSC
 2.3 GHz AMD “Budapest” quad-core Opteron, 2GB DDR2-800/core

– Jaguar - XT4 at ORNL
 2.1 GHz AMD quad-core Opteron, 2GB DDR2-800/core

– Jaguar - XT5 at ORNL
 2.6 GHz AMD “Istanbul” hex-core Opteron, 1.3GB DDR2-800/core

– Hopper - XE6 at NERSC
 2.1 GHz AMD dual-twelve cores Magnycours, 1.3GB DDR3-1333/core

—network topologies
– XT4, XT5: 3D Torus based on Seastar2 routers; XE6: Gemini

12

Productivity = Performance / SLOC
Performance (on Cray XT4 and XT5)

Source lines of code

13

Benchmark Source
Lines

Reference
SLOC Reduction

Randomaccess 409 787 48%
EP STREAM 63 329 81%
Global HPL 786 8800 91%
Global FFT 450 1130 60%

UTS 544 n/a n/a

Notes
• STREAM: 82% of peak

memory bandwidth
• HPL: 49% of FP peak at @

4096 cores (uses dgemm)
• Issues with GASNet 1.17

runtime for 4K and more
processors on XE6

of
cores

STREAM Triad*
(TByte/s)

RandomAccess‡
(GUP/s)

Global HPL†
(TFlop/s)

Global FFT†
(GFlop/s)

UTS*
(MNode/s)

64 0.17 0.08 0.36 6.69 163.1
256 0.67 0.24 1.36 22.82 645.0

1024 2.66 0.69 4.99 67.80 2371
4096 10.70 2.01 18.3 187.04 7818
8192 21.69 357.80 12286

HPC Challenge Benchmark

*Jaguar - XT5 ‡Jaguar - XT4 †Franklin - XT4

Source Code Breakdown

14

STREAM RandomAccess FFT HPL UTS

Computation 32 188 180 536 267
Communication & synchronization 1 12 4 46 17
Declaration 17 118 103 109 151
Comments & spaces 13 91 163 95 109
Total 63 409 450 786 544

Table 1: Source lines of code for CAF 2.0 benchmarks.

Experiments with UTS were performed on the Cray XT5 partition of Jaguar, which consists of 18,688
compute nodes. Each compute node contains dual hex-core AMD Opteron 2435 (Istanbul) processors running
at 2.6GHz, 16GB of DDR2-800 memory, and a SeaStar 2+ router.

Table 2 shows performance results of the four benchmarks running on up to 8192 cores of the aforemen-
tioned Cray systems.

2 EP STREAM Triad

The STREAM benchmark evaluates the extent to which a parallel system can deliver and sustain peak
memory bandwidth by performing a simple vector operation that scales and adds two vectors:

a ← b+ αc (1)

Performance of the STREAM benchmark is measured in GByte/s, with the calculated performance defined
as 24 m

tmin
10−9, where m is the size of the vectors, required to be at least a quarter of system memory; and

tmin is the minimum execution time over at least 10 repetitions of the benchmark kernel. The STREAM
benchmark is embarrassingly parallel; the work performed on any one node is independent of that performed
on others.

Since the STREAM benchmark does not require communication between processes, the Coarray Fortran
version is essentially identical to the sequential Fortran implementation, with the exception that all arrays
are declared and allocated as coarrays. A sketch of the essence of our implementation is shown in Figure 1.

To deliver top performance, we outlined the STREAM triad calculation from the timing loop. Since our
CAF 2.0 compiler presently represents coarray data using F90 pointers, having the triad computation in a
separate routine enabled us to inform the compiler that the arrays were contiguous data by using explicit
shape array declarations within triad. Eventually, we will either automatically outline coarray computations
for performance, or use the Fortran 2008 CONTIGUOUS attribute to inform the back-end compiler about
the contiguity of coarray data and avoid the need for outlining.

We initialized b and c with identical values (generated with the random number generator from Rando-
mAccess), and set the scalar α to -1, so that the result should be 0. We considered the calculation verified
if the maximum value of the difference between the computed value and 0 was less than 10−9.

3 RandomAccess

The RandomAccess benchmark evaluates the rate at which a parallel system can apply updates to randomly
indexed entries in a distributed table. Performance of the RandomAccess benchmark is measured in Giga
Updates Per Second (GUP/s). GUP/s is calculated by identifying the number of table entries that can
be randomly updated in one second, divided by 1 billion (1e9). The term “randomly” means that there is
little relationship between one table index to be updated and the next. An update is a read-modify-write
operation on a 64-bit word in the table. First, a table index is generated using a random number generator.
Then, the table value at that index is combined with a literal value using an xor and the resulting value is
written back to memory.

2

