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Star-P enables Python, MATLAB®, and R users to 
go parallel easily with competitive performance. 

MATLAB is a registered trademark of The MathWorks, Inc.  ISC's products are not sponsored or
endorsed by The Mathworks, Inc. or by any other trademark owner referred to in this document. 
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Approach to HPC Challenge

• Create Python version of 4 HPCC benchmarks
– HPL, Stream, Random Access, and FFT
– Why Python?

• Parallelize with Star-P constructs
• Measure and tune
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Star-P Basics:
Bridges the gap between desktop tools and parallel computing systems

Value proposition
– Rapid, interactive apps 

development
– Potent high-level 

parallel abstractions
– Minimize code changes
– High speed and/or large 

memory
– MATLAB® and Python 

clients today, R soon
– Scales to 100s of cores, 

>4TB memory
– Extensible with existing 

serial or MPI-parallel 
libraries
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Star-P/Python Parallel Constructs

Task-Parallel
• Iterations clearly separable 
• Use Star-P’s parallel iterator

Data Parallel
• Large monolithic data
• Create distributed arrays

– Distributed attribute propagates to result variables
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HPL Source Code
def run_hpl(n, nr, tol=16):

"""
Run the High-performance LINPACK test on a matrix of size n x n, nr
number of times and ensures that the the maximum of the three
residuals is strictly less than the prescribed tolerance (defaults
to 16).

This function returns the performance in GFlops/Sec.
"""
a = random.rand(n, n);
b = random.rand(n, 1);
x,t = iterate_func(nr, linalg.solve, a, b)

r = dot(a, x)-b
r0 = linalg.norm(r, inf)
r1 = r0/(eps * linalg.norm(a, 1) * n)
r2 = r0/(eps * linalg.norm(a, inf) * linalg.norm(x, inf) * n)

performance  = (1e-9 * (2.0/3.0 * n * n * n + 3.0/2.0 * n * n) * 
nr/t)

verified     = numpy.max((r0, r1, r2)) < 16

if not verified:
raise RuntimeError, "Solution did not meet the prescribed tolerance 
%d"%tol

return performance
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STREAM Source Code
def run_epstream(n, nr):

"""
Run the embarrasingly parallel stream benchmark on vectors of size
n, nr number of times.

This function returns the performance of the benchmark in
GFlops/second.
"""
s = random.rand(1);
a = random.rand(n);
b = random.rand(n);
c,t = iterate_func(nr, lambda s, a, b: s*a+b, s, a, b)

performance = (1e-9) * 24.0 * nr * n / t

return performance
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Random Access Source Code
import time, optparse
import starp as sp

def update_state(ran, idx, table_size):
sp.runCommand('rng_update_state', ran, idx, table_size);

def update(table_size, n_in, n_out):
t1 = 0;
t0 = time.time()
t = sp.arange(table_size)
t1 += (time.time() - t0)
ran = sp.zeros(n_in, )
idx = sp.zeros(n_in, )

for outer in xrange(n_out):
update_state(ran, idx, table_size)
t0 = time.time();
t[idx] ^= ran
t1 += (time.time() - t0);

return 1.0e-9 * n_in * n_out/float(t1);

def run_random_access(n, nr):
n_in = 1024;
n_out = nr/n_in;

if n_out * n_in != nr:
raise ValueError("Number of updates must be evenly divisible by %d" % 

n_in)

return update(n, n_in, n_out);
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FFTE Source Code
def run_fft(n, nr, tol=16):

"""
Run the one-dimensional FFT benchmark on a vector of size n, nr
number of times and verifies that the inverse transforms recreates
the original vector upto a tolerance, tol (defaults to 16).

This function returns the performance in GFlops/sec.
"""
a = random.rand(n,1)
b, t = iterate_func(nr, fft.fft, a)

log2n = math.log(n)/math.log(2)
performance = 1e-9 * 5.0 * n * log2n * nr/t
verified    = linalg.norm(a - (fft.ifft(b))) / (eps * log2n) < tol

if not verified:
raise RuntimeError, "Solution did not meet the tolerance %d"%tol

return performance
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Product Scalability:
Does this work in any other industry?

How the coffee industry treats someone
ordering a Large

How the computing industry 
treats VHLL language users 

wanting a Large
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Code Attributes

• Implemented with Star-P 2.5.1 
(currently shipping product)

• Developed on small in-house 
system, scaled directly to 128-
core system at SDSC

• Difference from desktop, in 
framework for HPL/Stream/FFTE
if nproc == 0:

from numpy import *
else:

from starp import *
– Can exert greater control with 

more code changes
• RandomAccess:  

– Not a good match for current 
Python/Star-P

– Used custom 27-line C++ kernel
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Scaling Results
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Relevance for General HPC

• HPCC benchmarks (except RandomAccess) 
lend themselves to trivial task- or data-
parallel expression
– Data analysis codes are similar, and need rapid 

development
• Typical HPC apps have more complex data 

sharing patterns and depend more on many 
simpler functions, not one large function
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Star-P enables Python, MATLAB®, and R users to 
go parallel easily with competitive performance. 

MATLAB is a registered trademark of The MathWorks, Inc.  ISC's products are not sponsored or
endorsed by The Mathworks, Inc. or by any other trademark owner referred to in this document. 
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For our full description, go to 
www.InteractiveSupercomputing.com/applibrary/


