
Strongly Performing Python
Implementation of the HPC Challenge

Interactive Supercomputing, Inc.

2

Star-P enables Python, MATLAB®, and R users to
go parallel easily with competitive performance.

MATLAB is a registered trademark of The MathWorks, Inc. ISC's products are not sponsored or
endorsed by The Mathworks, Inc. or by any other trademark owner referred to in this document.

3

Approach to HPC Challenge

• Create Python version of 4 HPCC benchmarks
– HPL, Stream, Random Access, and FFT
– Why Python?

• Parallelize with Star-P constructs
• Measure and tune

4

Star-P Basics:
Bridges the gap between desktop tools and parallel computing systems

Value proposition
– Rapid, interactive apps

development
– Potent high-level

parallel abstractions
– Minimize code changes
– High speed and/or large

memory
– MATLAB® and Python

clients today, R soon
– Scales to 100s of cores,

>4TB memory
– Extensible with existing

serial or MPI-parallel
libraries

5

Star-P/Python Parallel Constructs

Task-Parallel
• Iterations clearly separable
• Use Star-P’s parallel iterator

Data Parallel
• Large monolithic data
• Create distributed arrays

– Distributed attribute propagates to result variables

6

HPL Source Code
def run_hpl(n, nr, tol=16):

"""
Run the High-performance LINPACK test on a matrix of size n x n, nr
number of times and ensures that the the maximum of the three
residuals is strictly less than the prescribed tolerance (defaults
to 16).

This function returns the performance in GFlops/Sec.
"""
a = random.rand(n, n);
b = random.rand(n, 1);
x,t = iterate_func(nr, linalg.solve, a, b)

r = dot(a, x)-b
r0 = linalg.norm(r, inf)
r1 = r0/(eps * linalg.norm(a, 1) * n)
r2 = r0/(eps * linalg.norm(a, inf) * linalg.norm(x, inf) * n)

performance = (1e-9 * (2.0/3.0 * n * n * n + 3.0/2.0 * n * n) *
nr/t)

verified = numpy.max((r0, r1, r2)) < 16

if not verified:
raise RuntimeError, "Solution did not meet the prescribed tolerance
%d"%tol

return performance

7

STREAM Source Code
def run_epstream(n, nr):

"""
Run the embarrasingly parallel stream benchmark on vectors of size
n, nr number of times.

This function returns the performance of the benchmark in
GFlops/second.
"""
s = random.rand(1);
a = random.rand(n);
b = random.rand(n);
c,t = iterate_func(nr, lambda s, a, b: s*a+b, s, a, b)

performance = (1e-9) * 24.0 * nr * n / t

return performance

8

Random Access Source Code
import time, optparse
import starp as sp

def update_state(ran, idx, table_size):
sp.runCommand('rng_update_state', ran, idx, table_size);

def update(table_size, n_in, n_out):
t1 = 0;
t0 = time.time()
t = sp.arange(table_size)
t1 += (time.time() - t0)
ran = sp.zeros(n_in,)
idx = sp.zeros(n_in,)

for outer in xrange(n_out):
update_state(ran, idx, table_size)
t0 = time.time();
t[idx] ^= ran
t1 += (time.time() - t0);

return 1.0e-9 * n_in * n_out/float(t1);

def run_random_access(n, nr):
n_in = 1024;
n_out = nr/n_in;

if n_out * n_in != nr:
raise ValueError("Number of updates must be evenly divisible by %d" %

n_in)

return update(n, n_in, n_out);

9

FFTE Source Code
def run_fft(n, nr, tol=16):

"""
Run the one-dimensional FFT benchmark on a vector of size n, nr
number of times and verifies that the inverse transforms recreates
the original vector upto a tolerance, tol (defaults to 16).

This function returns the performance in GFlops/sec.
"""
a = random.rand(n,1)
b, t = iterate_func(nr, fft.fft, a)

log2n = math.log(n)/math.log(2)
performance = 1e-9 * 5.0 * n * log2n * nr/t
verified = linalg.norm(a - (fft.ifft(b))) / (eps * log2n) < tol

if not verified:
raise RuntimeError, "Solution did not meet the tolerance %d"%tol

return performance

10

Product Scalability:
Does this work in any other industry?

How the coffee industry treats someone
ordering a Large

How the computing industry
treats VHLL language users

wanting a Large

11

Code Attributes

• Implemented with Star-P 2.5.1
(currently shipping product)

• Developed on small in-house
system, scaled directly to 128-
core system at SDSC

• Difference from desktop, in
framework for HPL/Stream/FFTE
if nproc == 0:

from numpy import *
else:

from starp import *
– Can exert greater control with

more code changes
• RandomAccess:

– Not a good match for current
Python/Star-P

– Used custom 27-line C++ kernel

017478FFTE

6
(+71 C++)

188346
(+71 C++)

RandomAccess

06586STREAM

01560813HPL

2?63framework

Distance to
Desktop

SLOC
(MPI)

SLOC
(Python/
Star-P)

Benchmark

12

Scaling Results

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140
of Processors

HPL (GFLOPS)
Stream (GB/s)
FFTE (GFLOPS)

Performance

299.976139.475128
232.475106.504254.22196
152.57470.769165.96964

0.0019474.03735.62698.90132
0.0011835.62717.89450.716

RandomAccess
(GUPS)

FFTE
(GFLOPS)

Stream
(GB/s)

HPL
(GFLOPS)

#cores

• Strong absolute
performance

• Strong
scalability

13

Relevance for General HPC

• HPCC benchmarks (except RandomAccess)
lend themselves to trivial task- or data-
parallel expression
– Data analysis codes are similar, and need rapid

development
• Typical HPC apps have more complex data

sharing patterns and depend more on many
simpler functions, not one large function

14

Star-P enables Python, MATLAB®, and R users to
go parallel easily with competitive performance.

MATLAB is a registered trademark of The MathWorks, Inc. ISC's products are not sponsored or
endorsed by The Mathworks, Inc. or by any other trademark owner referred to in this document.

15

For our full description, go to
www.InteractiveSupercomputing.com/applibrary/

