Cilk for High
Productivity Computing

Bradley C. Kuszmaul
(Presented by Charles E. Leiserson)
Supercomputing Technologies Research Group
MIT CSAIL

November 15, 2005 Cilk for High Productivity Computing, SC|05



Cilk

A C language for dynamic multithreading
with a provably good runtime system.

Platforms Applications
AMD Opteron » virus shell assembly
 Sun UltraSparc * graphics rendering
» SGI Altix * N-body simulation
* Intel Pentium * % Socrates and Cilkchess

Cilk automatically manages low-level
aspects of parallel execution, including
protocols, load balancing, and scheduling.

November 15, 2005 Cilk for High Productivity Computing, SC|05 2



Example: Vector Addition

void vadd (real *A, real *B, int L, iInt H){
\ int i; for (i=L; i<H; i++) A[i]+=B[i];

November 15, 2005 Cilk for High Productivity Computing, SC|05 3



Example: Vector Addition

void vadd (real *A, real *B, int L, iInt H){
\ int i; for (i=L; i<H; i++) A[i]+=B[i];

. cilk void vadd (real *A, real *B, int L, int H){
Cilk if (L+BASE>H) {

int 1; for (1=L; i1<H; 1++) A[1]+=B[1];
} else {

spawn vadd (A, B, L, (L+H)/2);

spawn vadd (A, B, (L+H)/2, H);

sync;

To expose parallelism, convert loops to recursion.
Side benefit: Divide-and-conquer is good for caches!

November 15, 2005 Cilk for High Productivity Computing, SC|05 4



Example: Vector Addition

void vadd (real *A, real *B, int L, iInt H){
\ int i; for (i=L; i<H; i++) A[i]+=B[i];

. cilk void vadd (real *A, real *B, Int L, Int H){
Cilk if (L+BASE>H) {

int 1; for (1=L; i1<H; 1++) A[1]+=B[1];
} else {

spawn vadd (A, B, L, (L+H)/2);

spawn vadd (A, B, (L+H)/2, H);

sync;

Cilk 1s a faithful extension of C. A Cilk program’s
serial elision 1s always a legal implementation of
Cilk semantics. Cilk provides no new data types.

November 15, 2005 Cilk for High Productivity Computing, SC|05 5



Example: Vector Addition

void vadd (real *A, real *B, int L, iInt H){
\ int i; for (i=L; i<H; i++) A[i]+=B[i];

. <+He void vadd (real *A, real *B, int L, int H){
Cik T (LBASES) £ T
- t . =L ; <H, ++ += ;

serial 1 é?sel{ Z; (; - IL II_ H)/Z[I] L1}

- . Spawh- + ;
elision -spawn-zgdd EA B. (I’_+Ig)/2? H%

SyfRes-

+

+

Cilk 1s a faithful extension of C. A Cilk program’s
serial elision 1s always a legal implementation of
Cilk semantics. Cilk provides no new data types.

November 15, 2005 Cilk for High Productivity Computing, SC|05 6



Cilk Productivity

SLOC* SLOC*
Benchmark T/ T (Cilk) (MPI)

STREAM 1.062 85 658
PTRANS 1.004 87 2261
RandomAccess 1.002 161 1883
HPL 1.022 398 15608
DGEMM 1.015 373 27+
FFTE 1.065 10857 1747

* “Source lines of code” omits comments and blank lines,
but includes . h files (official count does not).

T MPI DGEMM uses the HPL parallel matrix multiplication.
The framework 1s 184 SLOC.

I FFTW includes a Cilk interface (since 1t was a product of
our research group). I wrote 76 SLOC for the framework.

November 15, 2005 Cilk for High Productivity Computing, SC|05




Speedups

) @Pcce%% N\

28 P* (\0 <
Platform p SIRE IR e RV oGP
Opteron 840 4 238 329 321 376 392 3.13
Altix 350 16 1033 6.62 495 14.11 14.97 12.50
UltraSparc-111 16 1125 11.32 8.78 14.55 15.16 14.67
UltraSparc-1l 30 955 7.70 11.05 23.36 28.05 25.62
UltraSparc-1V 144 95.78

Many thanks to Sun Microsystems; the University of Rochester
Department of Computer Science; and the MIT Department of
Earth, Atmospheric, and Planetary Sciences for their donations
of machine time to run these benchmarks.

November 15, 2005 Cilk for High Productivity Computing, SC|05 8



Conclusion

* Cilk is simple, faithfully extending the legacy C
language with only a handful of new keywords.
> Cilk contains no new data types.

Cilk encourages recursive programming.
Divide-and-conquer exploits data locality for caches.

» Cilk scales down to run on one processor with
nearly the efficiency of C.
> Fast C code < fast Cilk code.

Cilk scales up provably well, guaranteeing near-
perfect linear speedup, assuming that
sufficient parallelism exists in the application, and
the platform has adequate communication bandwidth.

November 15, 2005 Cilk for High Productivity Computing, SC|05



Cost of Programming

Commodity codes are amortized over
to more users than custom codes.

* Today’s custom scalable codes employ

arcane programming models usable only
by experts.

Our research 1s focused on reinventing
scalable computing as a seamless extension
of commodity serial computing.

November 15, 2005 Cilk for High Productivity Computing, SC|05 10



Current Research

 JCilk, a Java-based multithreaded language, fuses
dynamic and persistent multithreading.

Adaptive thread and job scheduling guarantees fair
and efficient resource sharing.

Transactional memory simplifies thread synchroniz-
ation and improves performance compared with
locking, especially for multicore processors.

* Cilk-DXM integrates Cilk with distributed
transactional memory for clusters.

- Parallel data-race detectors can guarantee to find
synchronization bugs efficiently.

« Cache-oblivious algorithms offer high performance
for streaming file I/0O through passive self-tuning.

November 15, 2005 Cilk for High Productivity Computing, SC|05

11



World Wide Web

Cilk source code, programming examples,
documentation, technical papers, tutorials,
and up-to-date information can be found at:

http://supertech.csail._mit.edus/cilk

lMtMn J@aMJ IJlI(ﬁ TfmﬂaM

5555555555555



HPC Challenge (Class 2)

Most productivity: Most “elegant”
implementation of two or more of seven
parallel benchmarks:

« STREAM: vector addition & scaling
* PTRANS: matrix transpose
- RandomAccess: eponymous

HPL: PLU decomposition
- DGEMM: matrix multiplication
*FFTE: fast Fourier transform

* b_eff: bandwidth and efficiency

November 15, 2005 Cilk for High Productivity Computing, SC|05 13



