Introduction to the HPC Challenge Benchmark Suite

Piotr Luszczek!, Jack J. Dongarral’z, David Koester?, Rolf Rabenseifner*>, Bob Lucas®’,
Jeremy Kepner®, John McCalpin®, David Bailey!?, and Daisuke Takahashi'!

'University of Tennessee Knoxville
20ak Ridge National Laboratory
SMITRE
“High Performance Computing Center (HLRS)
SUniversity Stuttgart, www.hlrs.de/people/rabenseifner
®Information Sciences Institute
TUniversity of Southern California
8MIT Lincoln Lab
’IBM Austin
10 awrence Berkeley National Laboratory
"University of Tsukuba

March 2005

Abstract

The HPC Challenge' benchmark suite has been re-
leased by the DARPA HPCS program to help define the
performance boundaries of future Petascale computing
systems. HPC Challenge is a suite of tests that exam-
ine the performance of HPC architectures using kernels
with memory access patterns more challenging than
those of the High Performance Linpack (HPL) bench-
mark used in the Top500 list. Thus, the suite is designed
to augment the Top500 list, providing benchmarks that
bound the performance of many real applications as
a function of memory access characteristics e.g., spa-
tial and temporal locality, and providing a framework
for including additional tests. In particular, the suite
is composed of several well known computational ker-
nels (STREAM, HPL, matrix multiply — DGEMM, paral-
lel matrix transpose — PTRANS, FFT, RandomAccess,

I'This work was supported in part by the DARPA, NSF, and
DOE through the DARPA HPCS program under grant FA8750-04-
1-0219.

and bandwidth/latency tests — b_eff) that attempt to span
high and low spatial and temporal locality space. By de-
sign, the HPC Challenge tests are scalable with the size
of data sets being a function of the largest HPL matrix
for the tested system.

1 High Productivity Computing
Systems

The DARPA High Productivity Computing Sys-
tems (HPCS) [1] is focused on providing a new gener-
ation of economically viable high productivity comput-
ing systems for national security and for the industrial
user community. HPCS program researchers have initi-
ated a fundamental reassessment of how we define and
measure performance, programmability, portability, ro-
bustness and ultimately, productivity in the High End
Computing (HEC) domain.

The HPCS program seeks to create trans-petaflops
systems of significant value to the Government HPC

community. Such value will be determined by assess-
ing many additional factors beyond just theoretical peak
flops (floating-point operations). Ultimately, the goal is
to decrease the time-to-solution, which means decreas-
ing both the execution time and development time of an
application on a particular system. Evaluating the capa-
bilities of a system with respect to these goals requires a
different assessment process. The goal of the HPCS as-
sessment activity is to prototype and baseline a process
that can be transitioned to the acquisition community
for 2010 procurements. As part of this effort we are de-
veloping a scalable benchmark for the HPCS systems.

The basic goal of performance modeling is to mea-
sure, predict, and understand the performance of a com-
puter program or set of programs on a computer system.
The applications of performance modeling are numer-
ous, including evaluation of algorithms, optimization
of code implementations, parallel library development,
and comparison of system architectures, parallel system
design, and procurement of new systems.

This paper is organized as follows: sections 2 and 3
give motivation and overview of HPC Challenge while
sections 4 and 5 provide more detailed description of
the HPC Challenge tests and section 6 talks briefly
about the scalibility of the tests; sections 7, 8, and 9
describe the rules, the software installation process and
some of the current results, respectively. Finally, sec-
tion 10 concludes the paper.

2 Motivation

The DARPA High Productivity Computing Sys-
tems (HPCS) program has initiated a fundamental re-
assessment of how we define and measure perfor-
mance, programmability, portability, robustness and,
ultimately, productivity in the HPC domain. With this
in mind, a set of computational kernels was needed
to test and rate a system. The HPC Challenge suite
of benchmarks consists of four local (matrix-matrix
multiply, STREAM, RandomAccess and FFT) and four
global (High Performance Linpack — HPL, parallel ma-
trix transpose — PTRANS, RandomAccess and FFT)
kernel benchmarks. HPC Challenge is designed to ap-
proximately bound computations of high and low spa-
tial and temporal locality (see Figure 1). In addition,
because HPC Challenge kernels consist of simple math-
ematical operations, this provides a unique opportunity

to look at language and parallel programming model is-
sues. In the end, the benchmark is to serve both the
system user and designer communities [2].

3 The Benchmark Tests

This first phase of the project have developed, hardened,
and reported on a number of benchmarks. The collec-
tion of tests includes tests on a single processor (local)
and tests over the complete system (global). In partic-
ular, to characterize the architecture of the system we
consider three testing scenarios:

1. Local —only a single processor is performing com-
putations.

2. Embarrassingly Parallel — each processor in the en-
tire system is performing computations but they do
not communicate with each other explicitly.

3. Global — all processors in the system are perform-
ing computations and they explicitly communicate
with each other.

The HPC Challenge benchmark consists at this
time of 7 performance tests: HPL [3], STREAM [4],
RandomAccess, PTRANS, FFT (implemented using
FFTE [5]), DGEMM [6, 7] and b_eff (MPI la-
tency/bandwidth test) [8, 9, 10]. HPL is the Linpack
TPP (toward peak performance) benchmark. The test
stresses the floating point performance of a system.
STREAM is a benchmark that measures sustainable
memory bandwidth (in Gbyte/s), RandomAccess mea-
sures the rate of random updates of memory. PTRANS
measures the rate of transfer for large arrays of data
from multiprocessor’s memory. Latency/Bandwidth
measures (as the name suggests) latency and bandwidth
of communication patterns of increasing complexity be-
tween as many nodes as is time-wise feasible.

Many of the aforementioned tests were widely used
before HPC Challenge was created. At first, this may
seemingly make our benchmark merely a packaging ef-
fort. However, almost all components of HPC Chal-
lenge were augmented from their original form to pro-
vide consistent verification and reporting scheme. We
should also stress the importance of running these very
tests on a single machine and have the results available
at once. The tests were useful separately for the HPC

community before and with the unified HPC Challenge
framework they create an unprecedented view of perfor-
mance characterization of a system — a comprehensive
view that captures the data under the same conditions
and allows for variety of analysis depending on end user
needs.

Each of the included tests examines system perfor-
mance for various points of the conceptual spatial and
temporal locality space shown in Figure 1. The ra-
tionale for such selection of tests is to measure per-
formance bounds on metrics important to HPC appli-
cations. The expected behavior of the applications is
to go through various locality space points during run-
time. Consequently, an application may be represented
as a point in the locality space being an average (pos-
sibly time-weighed) of its various locality behaviors.
Alternatively, a decomposition can be made into time-
disjoint periods in which the application exhibits a sin-
gle locality characteristic. The application’s perfor-
mance is then obtained by combining the partial results
from each period.

Another aspect of performance assessment addressed
by HPC Challenge is ability to optimize benchmark
code. For that we allow two different runs to be re-
ported:

e Base run done with provided reference implemen-
tation.

e Optimized run that uses architecture specific opti-
mizations.

The base run, in a sense, represents behavior of legacy
code because it is conservatively written using only
widely available programming languages and libraries.
It reflects a commonly used approach to parallel pro-
cessing sometimes referred to as hierarchical paral-
lelism that combines Message Passing Interface (MPI)
with threading from OpenMP. At the same time we rec-
ognize the limitations of the base run and hence we al-
low (or even encourage) optimized runs to be made.
The optimizations may include alternative implemen-
tations in different programming languages using par-
allel environments available specifically on the tested
system. To stress the productivity aspect of the HPC
Challenge benchmark, we require that the information
about the changes made to the original code be submit-
ted together with the benchmark results. While we un-
derstand that full disclosure of optimization techniques

may sometimes be impossible to obtain (due to for ex-
ample trade secrets) we ask at least for some guidance
for the users that would like to use similar optimizations
in their applications.

4 Benchmark Details

Almost all tests included in our suite operate on either
matrices or vectors. The size of the former we will de-
note below as n and the latter as m. The following holds
throughout the tests:

n? ~ m ~ Available Memory

Or in other words, the data for each test is scaled so that
the matrices or vectors are large enough to fill almost
all available memory.

HPL (High Performance Linpack) is an implemen-
tation of the Linpack TPP (Toward Peak Performance)
variant of the original Linpack benchmark which mea-
sures the floating point rate of execution for solving a
linear system of equations. HPL solves a linear system
of equations of order n:

Ax=b; AcR"; x,bcR"

by first computing LU factorization with row partial
pivoting of the n by n+ 1 coefficient matrix:

P[A7b] = [[L7 U]uy]'

Since the row pivoting (represented by the permutation
matrix P) and the lower triangular factor L are applied
to b as the factorization progresses, the solution x is ob-
tained in one step by solving the upper triangular sys-
tem:

Ux=y.

The lower triangular matrix L is left unpivoted and the
array of pivots is not returned. The operation count
for the factorization phase is %n3 — %nz and 2n? for the
solve phase. Correctness of the solution is ascertained
by calculating the scaled residuals:

ellAl[in
———— and
e[|A]1 [l
El|Alolxlle”

PTRANS HPL
STREAM DGEMM
CFD Radar X-section
2 —
= Applications
g
= TSP DSP
(=9
wn
RandomAccess FFT
0 Temporal locality

Figure 1: Targeted application areas in the memory access locality space.

where € is machine precision for 64-bit floating-point
values and 7 is the size of the problem.

DGEMM measures the floating point rate of execution
of double precision real matrix-matrix multiplication.
The exact operation performed is:

C—pBC+aAB

where:

AB,CeR"", a,B €R"

The operation count for the multiply is 21> and correct-
ness of the operation is ascertained by calculating the
scaled residual: ||C —C||/(en||C||r) (C is a result of
reference implementation of the multiplication).

STREAM is a simple benchmark program that mea-
sures sustainable memory bandwidth (in Gbyte/s) and
the corresponding computation rate for four simple vec-
tor kernels:

COPY: ¢ «— a
SCALE: b «+— oac
ADD: ¢ «— a+b
TRIAD: a «— b+ac
where:
a,b,ceR";, aecR.

As mentioned earlier, we try to operate on large data
objects. The size of these objects is determined at run-
time which contrasts with the original version of the

STREAM benchmark which uses static storage (deter-
mined at compile time) and size. The original bench-
mark gives the compiler more information (and control)
over data alignment, loop trip counts, etc. The bench-
mark measures Gbyte/s and the number of items trans-
ferred is either 2m or 3m depending on the operation.
The norm of the difference between reference and com-
puted vectors is used to verify the result: ||x — %||.

PTRANS (parallel matrix transpose) exercises the
communications where pairs of processors exchange
large messages simultaneously. It is a useful test of the
total communications capacity of the system intercon-
nect. The performed operation sets a random n by n
matrix to a sum of its transpose with another random
matrix:

A—AT+B

where:
A,Be R,

The data transfer rate (in Gbyte/s) is calculated by di-
viding the size of n?> matrix entries by the time it took to
perform the transpose. The scaled residual of the form
|A—A|| /(g n) verifies the calculation.

RandomAccess measures the rate of integer updates
to random memory locations (GUPS). The operation
being performed on an integer array of size m is:

x— f(x)
fix— (x®a;); a;— pseudo-random sequence
where:
2" -7", xelZ".

The operation count is 4m and since all the opera-
tions are in integral values over GF(2) field they can be
checked exactly with a reference implementation. The
verification procedure allows 1% of the operations to be
incorrect (skipped) which allows loosening concurrent
memory update semantics on shared memory architec-
tures.

FFT measures the floating point rate of execution
of double precision complex one-dimensional Discrete
Fourier Transform (DFT) of size m:

m .
_opidk
Zk<—sze Wi 1 <k<m
J

where:
2, ZeC".

The operation count is taken to be Smlog, m for the cal-
culation of the computational rate (in Gflop/s). Verifi-
cation is done with a residual ||x—£||/(& logm) where £
is the result of applying a reference implementation of
inverse transform to the outcome of the benchmarked
code (in infinite-precision arithmetic the residual should
be zero).

Communication bandwidth and latency is a set of
tests to measure latency and bandwidth of a number of
simultaneous communication patterns. The patterns are
based on b_eff (effective bandwidth benchmark) — they
are slightly different from the original b_eff. The oper-
ation count is linearly dependent on the number of pro-
cessors in the tested system and the time the tests take
depends on the parameters of the tested network. The
checks are built into the benchmark code by checking
data after it has been received.

5 Latency and Bandwidth Bench-
mark

The latency and bandwidth benchmark measures two
different communication patterns. First, it measures the
single-process-pair latency and bandwidth, and second,
it measures the parallel all-processes-in-a-ring latency
and bandwidth.

For the first pattern, ping-pong communication is
used on a pair of processes. Several different pairs of
processes are used and the maximal latency and min-
imal bandwidth over all pairs is reported. While the

ping-pong benchmark is executed on one process pair,
all other processes are waiting in a blocking receive. To
limit the total benchmark time used for this first pat-
tern to 30 sec, only a subset of the set of possible pairs
is used. The communication is implemented with MPI
standard blocking send and receive.

In the second pattern, all processes are arranged
in a ring topology and each process sends and re-
ceives a message from its left and its right neighbor
in parallel. Two types of rings are reported: a nat-
urally ordered ring (i.e., ordered by the process ranks
in MPI_COMM_WORLD), and the geometric mean of the
bandwidth of ten different randomly chosen process or-
derings in the ring. The communication is implemented
(a) with MPI standard non-blocking receive and send,
and (b) with two calls to MPI_Sendrecv for both di-
rections in the ring. Always the fastest of both mea-
surements are used. With this type of parallel commu-
nication, the bandwidth per process is defined as total
amount of message data divided by the number of pro-
cesses and the maximal time needed in all processes.
This benchmark is based on patterns studied in the ef-
fective bandwidth communication benchmark [8, 9].

For benchmarking latency and bandwidth, 8 byte and
2,000,000 byte long messages are used. The major re-
sults reported by this benchmark are:

e maximal ping pong latency,

e average latency of parallel communication in ran-
domly ordered rings,

e minimal ping pong bandwidth,

e bandwidth per process in the naturally ordered
ring,

e average bandwidth per process in randomly or-
dered rings.

Additionally reported values are the latency of the nat-
urally ordered ring, and the remaining values in the set
of minimum, maximum, and average of the ping-pong
latency and bandwidth.

Especially the ring based benchmarks try to model
the communication behavior of multi-dimensional
domain-decomposition applications. The natural ring
is similar to the message transfer pattern of a regular
grid based application, but only in the first dimension
(adequate ranking of the processes is assumed). The

1000

a MinPingPongBandwidth
'>' GB/s
2 NaturalRingBandwidth
% 100 GB/s
- mmm RandomRingBandwidth
/ GB/s
10 4 < NaturalRingBandwidth /
g g‘ MinPingPongBandwidth QJ’J
o E x— RandomRingBandwidth /| 5
L = NaturalRingBandwidth <
£ 1 —A— RandomRingBandwidth / ::.j’
s § MinPingPongBandwidth | ¢
2 o —e— RandomRingLatency
835 01 microsecond
—o— MaxPingPongLatency
/ microsecond
0,01 4 Linpack (HPL)
_g- § TFlop/s
Loc —{O— RandomRingBw /
g g 0.001 (HPL/proc.count) [Byte/Flop]
o4 Measurements
,_Jr <> X X— & & W with HPL > 0.4 Tflop/s

0,0001

\K\\\\\K\\\\\\\\\\\\\\\\\\\\\0

Additionally shown

Bty 1y X W,
S1, C'Z ci”fégf,% G/,,,ng/,vo/,?% ,’é 44 o%,, het g ‘//;p" ’5‘e G/,V % gftr,fflf,,,, 5, 'ay Ca, & %, entries in the table
/ooy:jv gv /,g/ L"’;h‘q/”’%/”’& ',Z://,g*q 0,0/04- 000?00 /(4{'}7,/0 s,?ge,,,]? /”7}_5‘,, % 00 A, 9/2 ,,32‘7 e‘;"'}? sf"”e?%g
"V % k7 e
Yoy i ;y) 4; fe/”’e re', m ee?&; V%, /004410/0(% /z,,,s/ 00 /,,,s/ ,;}Za Sw,“‘w,;‘%;*f 450 tf" ,oeoro %
’64,;6,% e ?/7/""7///’90///‘90/ 5 ee’%ﬁ‘é\’ %9"@:‘7”/2/0?”6@25;% 9/7/:"90«'}'50/”/32/2?24/4920 3’“/"& e s,
2, z/eoz/o/, ler,, NS 20576
u/e,ows .a'be 6‘«182 e = SN S Iy NS popop S
R 4l G S e g s fooz s,
47 < G965 725, 72805 . 759 3 375750700,
56 25 73‘9*10’473*7 e* 7 7, 0660/2‘75’*7‘7 e G 2% \1949"@ 5ok , /Ye /Yeolye%
<?£58*7 " 25*7 ei\'g‘%l'g 6'4@ 797*7?‘2\'&1*7 0*7\
%7, .

Interconnect / Processor-Type, Speed, Processes x Threads

Figure 2: Base runs of the HPC Challenge bandwidth and latency benchmarks. Status Oct. 12, 2004.

random ring fits to the other dimensions and to the com-
munication pattern of unstructured grid based applica-
tions. Therefore, the analysis in Fig. 2 is mainly fo-
cused on the random ring bandwidth. The measure-
ments are sorted by this value, except that all Cray X1
and Myrinet measurements are kept together at the po-
sition of their best bandwidth.

The diagram consists of three bands: 1) the ping-
pong and random ring latencies, 2) the minimal ping-
pong, natural ring, and random ring bandwidth-bars to-
gether with a background curve showing the accumu-
lated Linpack (HPL) performance, and 3) the ratios nat-
ural ring to ping-pong, random ring to ping-pong, and
additionally random ring to natural ring.

Looking on the three interconnects with a random
ring bandwidth larger than 500 Mbyte/s, one can see
that all 3 systems are reporting a similar random ring
bandwidth (except with largest CPU count on Cray X1),
although the ping pong and natural ring bandwidth val-
ues are quite different. The ratio natural ring to ping-
ping bandwidth varies between 0.6 and 1.0, random
ring to ping-pong between 0.1 and 0.45, and random
to natural ring between 0.1 and 0.7. With the IBM

High Performance Switch (HPS), the reported band-
width values (0.72-0.75 Gbyte/s) are nearly indepen-
dent from the number of processes (64 to 256 [with
1.07 Tflop/s]), while the Cray X1 shows a degradation
from 1.03 Gbyte/s with 60 MSPs (0.58 Tflop/s) to 0.43
Gbyte/s with 252 MSPs (2.38 Tflop/s). As of October
12, 2004, values for larger NEC systems are still miss-
ing.

If we are looking at the high-lighted systems with
more than 0.4 Tflop/s accumulated Linpack perfor-
mance, the random ring latency and performance is
summarized in Table 1.

For the bandwidth values, the achievable percentage
on the random ring from the ping-pong varies between
4% and 45 %. For the latency values, the ratio ping-
pong to random varies between 0.12 and 0.99.

These examples should show the communication per-
formance of different network types, but also that the
ping-pong values are not enough for a comparison. The
ring based benchmark results are needed to analyze
these interconnects.

Switch | CPU per SMP: | Proc. Number Random Ping- | Rand. | Ping- | HPL Linpack Balance:

#netw. Speed of MPI Ring Pong Ring | Pong | accumu- per | Communi./

adap’s/ processes | Bandw. Bandw. Lat. Lat. lated | process Comput.

#CPUs GHz x threads | Gbyte/s Gbyte/s us us Gflop/s | Gflop/s byte/kflop

IBM Colony | IBM Power 4 1.3 256x1 0.0046 0.108 374 87 654 2.55 1.8
Quadrics switch | Alpha 21264B 1.0 484x1 0.023 0.280 40 618 1.28 17.8
Myrinet 2000 | Intel Xeon 3 3.066 256x1 0.032 0.241 22 22 1030 4.02 8.1
Sun Fire Link | Ultra Sparc III 0.9 128x1 0.056 0.468 9 5 75 0.59 94.5
Infiniband | Intel Xeon 2.46 128x1 0.156 0.738 12 12 413 3.23 48.2

SGI Numalink | Intel Itanium 2 1.56 128x1 0.211 1.8 6 3 639 4.99 42.2
NEC SX-6 IXS | NEC SX-6 1/8 0.5625 | 32x1 0.672 6.8 19 7 268 8.37 80.3
NEC SX-6 IXS™) | NEC SX-6 1/8 0.5625 | 4x8 6.759 7.0 8 6 (268) | (66.96) (100.9)
IBM HPS | IBM Power 4+ 1.7 64x4 0.724 1.7 8 6 1074 16.79 43.1

IBM HPS | IBM Power 4+ 1.7 32x4 0.747 1.7 8 6 532 16.62 45.0

Cray X1 | Cray X1 MSP 0.8 252x1 0.429 4.0 22 10 2385 9.46 45.3

Cray X1 | Cray X1 MSP 0.8 124x1 0.709 49 20 10 1205 9.72 72.9

Cray X1 | Cray X1 MSP 0.8 120x1 0.830 3.7 20 10 1061 8.84 93.9

Cray X1 | Cray X1 MSP 0.8 64x1 0.941 4.2 20 9 522 8.15 1154

Cray X1 | Cray X1 MSP 0.8 60x1 1.033 39 21 9 578 9.63 107.3

Table 1: Comparison of bandwidth and latency on HPCC entries with more than 0.4 Tflop/s with two exceptions:
For SGI Numalink, only MPT 1.10 values are shown, the older MPT 1.8-1 values are omitted, and for Sun Fire
and NEC SX-6, smaller systems are reported because on larger systems, HPCC results are not yet available. Note,
that each thread is running on a CPU, but the communication and the second HPL value are measured with MPI

processes.

*) This row is based on an additional measurement with the communication benchmark software. The HPL
value of this row is taken from the previous row because there isn’t a benchmark value available and significant
differences between single- and multi-threaded HPL execution are not expected. The last two columns are based

on this HPL value.

5.1 Balance of Communication to Com-
putation

For multi-purpose HPC systems, the balance of pro-
cessor speed, and memory, communication, and 1/O
bandwidth is important. In this section, we analyze
the ratio of the inter-node communication bandwidth
to the computational speed. To characterize the com-
munication bandwidth between SMP nodes, we use the
random ring bandwidth, because for a large number
of SMP nodes, most MPI processes will communicate
with MPI processes on other SMP nodes. This means,
with 8 or more SMP nodes, the random ring bandwidth
reports the available inter-node communication band-
width per MPI process. To characterize the computa-
tional speed, we use the HPL Linpack benchmark value
divided by the number of MPI processes, because HPL
can achieve nearly peak on cache-based and on vec-
tor systems, and with single- and multi-threaded exe-
cution. The ratio of the random ring bandwidth to the
HPL divided by the MPI process count expresses the
communication-computation balance in byte/flop (see
Figure 2) or byte/kflop (used in Table 1).

Although the balance is calculated based on MPI pro-
cesses, its value should be in principle independent of
the programming model, i.e. whether each SMP node
is used with several single-threaded MPI processes, or
some (or one) multi-threaded MPI processes, as long
as the number of MPI processes on each SMP node is
large enough that they altogether are able to saturate the
inter-node network [10].

Table 1 shows that the balance is quite different. Cur-
rently, the HPCC table lacks the information, how many
network adapters are used on each of the SMP nodes,
i.e., the balance may be different if a system is measured
with the exactly same interconnect and processors but a
smaller or larger amount of network adapters per SMP
node.

On the reported installations, the balance values start
with 1.8 /8.1/17.8 byte/kflop on IBM Colony, Myrinet
2000 and Quadrics. SGI Numalink, IBM High Perfor-
mance Switch, Infiniband, and the largest Cray X1 con-
figuration have a balance between 40 and 50 byte/kflop.
Highest balance values are available on Sun Fire Link
(but only with 0.59 Gflops per MPI process), on NEC
SX-6 and on Cray X1, here with up to 115 byte/kflop.

For NEC SX-6, the two different programming mod-
els single- and multi-threaded execution were used.
With the single-threaded execution, 25 % of the ran-
dom ring connections involve only intra-node commu-
nications. Therefore only 0.504 Gbyte/s (75 % from
0.672 Gbyte/s) represent the inter-node communica-
tion bandwidth per CPU. The inter-node bandwidth per
node (with 8 CPUs) is therefore 4.02 Gbyte/s respec-
tively. The balance of inter-node communication to
computation is characterized by the reduced value 60.2
byte/kflop. With multi-threaded execution, all com-
munication is done by the master-threads and is inter-
node communication. Therefore, the random ring band-
width is measured per node. It is significantly bet-
ter with the multi-threaded application programming
scheme (6.759 Gbyte/s) than with single-threaded (4.02
Gbyte/s). Implications on optimal programming mod-
els are discussed in [10].

6 On Scalability of Benchmarks
with Scalable Input Data

6.1 Notation
e P — number of CPUs

e M — total size of system memory

e r —rate of execution (unit: Gflop/s, GUPS, etc.)
e t —time

e N —size of global matrix for HPL and PTRANS

e V — size of global vector for RandomAccess and
FFT

6.2 Assumptions

Memory size per CPU is constant as the system grows.
This assumption based on architectural design of almost
all systems in existence. Hence, the total amount of
memory available in the entire system is linearly pro-
portional to the number of processors.

For HPL the dominant cost is CPU-related because
computation has higher complexity order than commu-
nication: &(n?) versus &'(n?).

6.3 Theory

Time complexity for HPL is &(n?) (the hidden constant
is %) so the time is:
N3
THPL

Since N is a size of a square matrix then we need to take
square root of available memory:

N o< /M o< \/P

The rate of execution for HPL is determined by the num-
ber of processors since computations (rather than com-
munication) dominates in terms of complexity:

o))

IHpL o<

rupL o< P

That leads to:

IHpL o< VP

Time complexity for RandomAccess is ¢'(n) so the
time is: v

IRandomAcccess < 2)
RandomAcccess

The main table for RandomAccess should be as big as
half of the total memory, so we get:

VoMo P

The rate of execution for RandomAccess can be argued
to have various forms:

e If we assume that the interconnect scales with the
number of processors then the rate would also
scale:

F'RandomAcccess < P

e Real-life experience tells that rrangomacccess 1S de-
pendent on the interconnect and independent of the
number of processors due to interconnect ineffi-
ciency:

FRandomAcccess < 1
Even worse, it is also conceivable that the rate is a
decreasing function of processors:
1

"RandomAcccess & 5

Conservatively assuming that rrangomacccess & 1 it fol-
lows that:

IRandomAcccess < P

Manufacturer Processor Interconnect GUPS flops/cycle frequency Mem/CPU SMP CPUs
[GUPS] [GHz] [GiB]
IBM Power 4 Federation 0.002628189 4 1.7 1 32
Cray X1 2D torus 0.145440128 16 0.8 4 4
Atipa Opteron Myrinet 2000 0.003195448 2 1.4 1 2
SGI Itanium 2 NUMAIlink 0.003053927 4 1.5 8 4
Voltaire Xeon InfiniBand 0.000650427 2 24 1 2

Table 2: System used in tests. The RandomAccess number is not necessarily accurate.

6.4 Scalability Tests

Tested systems are in Table 2.

Table 3

shows estimates of time it takes to run HPL

and RandomAccess. For a 256-CPU system Rando-
mAccess takes much longer to run than HPL (except for
Cray X1 which has large amount of memory per CPU
which makes for longer HPL run and large GUPS num-

ber which

makes for short RandomAccess run).

7 Rules for Running the Code

There must be one baseline run submitted for each com-
puter system entered in the archive. There may also ex-
ist an optimized run for each computer system.

1. Baseline Runs
Optimizations as described below are allowed.

(a)

(b)

Compile and load options

Compiler or loader flags which are supported
and documented by the supplier are allowed.
These include porting, optimization, and pre-
processor invocation.

Libraries
Linking to optimized versions of the follow-
ing libraries is allowed:

e BLAS
e MPI

Acceptable use of such libraries is subject to
the following rules:

o All libraries used shall be disclosed with
the results submission. Each library
shall be identified by library name, re-
vision, and source (supplier). Libraries
which are not generally available are not

permitted unless they are made avail-
able by the reporting organization within
6 months.

e Calls to library subroutines should have
equivalent functionality to that in the re-
leased benchmark code. Code modifi-
cations to accommodate various library
call formats are not allowed.

e Only complete benchmark output may
be submitted — partial results will not be
accepted.

2. Optimized Runs

(a) Code modification

Provided that the input and output specifica-
tion is preserved, the following routines may
be substituted:

e In HPL: HPL pdgesv (),
HPL_pdtrsv () (factorization and sub-
stitution functions)

e no changes are allowed in the DGEMM
component

e In PTRANS: pdtrans ()

e In STREAM:
tuned_STREAM Copy (),
tuned_STREAM_Scale (),
tuned_STREAM_AddA (),
tuned_STREAM_Triad()

e In RandomAccess:
MPIRandomAccessUpdate () and
RandomAccessUpdate ()

e In FFT:
fftwmalloc (), fftw_free(),
fftw_oone (), fftwmpi (),
fftw_createplan(),

System 64 CPUs 256 CPUs
HPL RandomAccess HPL RandomAccess
Powerd 29.08 108.9 58.1 435.7
CrayX1 123.6 7.8 2472 31.4
Opteron 70.6 89.6 141.2 358.4
Itanium 2 745.9 750.0 1491.9 3000.2
Xeon 41.2 440.2 82.4 1760.8

Table 3: Estimated time in minutes to perform full system test of HPL and RandomAccess.

fftw.destroy_plan(),
fftwmpi_createplan(),
fftwmpi_local_sizes (),
fftwmpi_destroy_plan () (all
of these functions are compatible with
FFTW 2.1.5[11, 12])

In b_eff component alternative MPI rou-
tines might be used for communication.
But only standard MPI calls are to be
performed and only to the MPI library
that is widely available on the tested sys-
tem.

(b) Limitations of Optimization

i.

1l.

1il.

Code with limited calculation accuracy
The calculation should be carried out in
full precision (64-bit or the equivalent).
However the substitution of algorithms
is allowed (see next).

Exchange of the used mathematical al-
gorithm

Any change of algorithms must be fully
disclosed and is subject to review by the
HPC Challenge Committee. Passing the
verification test is a necessary condition
for such an approval. The substituted al-
gorithm must be as robust as the base-
line algorithm. For the matrix multiply
in the HPL benchmark, Strassen Algo-
rithm may not be used as it changes the
operation count of the algorithm.

Using the knowledge of the solution
Any modification of the code or input
data sets, which uses the knowledge of
the solution or of the verification test, is
not permitted.

iv. Code to circumvent the actual computa-

tion

Any modification of the code to circum-
vent the actual computation is not per-
mitted.

8 Software Download, Installa-

tion, and Usage

The reference implementation of the benchmark may
be obtained free of charge at the benchmark’s web
site: http://icl.cs.utk.edu/hpcc/. The ref-
erence implementation should be used for the base
run. The installation of the software requires creating
a script file for Unix’s make (1) utility. The distribu-
tion archive comes with script files for many common
computer architectures. Usually, few changes to one of
these files will produce the script file for a given plat-
form.

After, a successful compilation the benchmark is
ready to run. However, it is recommended that changes
are made to the benchmark’s input file such that the
sizes of data to use during the run are appropriate for
the tested system. The sizes should reflect the available
memory on the system and number of processors avail-
able for computations.

We have collected a comprehensive set of notes on
the HPC Challenge benchmark. They can be found at
http://icl.cs.utk.edu/hpcc/faq/.

9 Example Results

Figure 3 shows a sample rendering of the results web
page: http://icl.cs.utk.edu/hpcc/hpcc.
results.cgi. It is impossible to show here all of
the results for nearly 60 systems submitted so far to the

10

- - & 3 - | M http//iclesutk.edu/hpee/hpoc_results.cgl > @oo @, .=
Home Rules News Download Links Collaborators Sponsors upload Results
Condensed Results - e Runs Only - 56 Systems - Generated on Mon Apr 25 12:56:11 2005
Systemn Informati G-Rand. EPSTREAM RandomRi RandomRi
Sysbemn - Processor -ySsper:d r-‘cocl.-::t I-O'thads - Processes (AL EHILEES Aco:sosm BHAE Triad EEECEREY E:n;'\:cilt:g L;r:qlng
MA/PT /PS5 FPC /T H fPRACN/CS /IC fLASSD TFlop /s GE/s Gup/s GFlop/s GE/s GFlopy/s GE/s use:
Atipa Conquest cluster AMD Opteron 1.4GHz 128 1 128 0.2526 3.247 1.629 0.03627 23.68
Cray X1 MSP 0.8GHz 64 1 64 0.5216 3.229 14.990 0.94074 20.34|
- . - -
Cray X1 MSP 0.8GHz &0 1 &0 0.5778 30.431 14974 1.03281 20.33|
Cray X1 MSP 0.8GHz 120 1 120 1.0610 2.460 8.496 0.83014 20.12|
Cray T3E Alpha 21164 0.6GHz 1024 1 1024 0.0482 10.277 0.517 0.03174 12.09|
Cray X1 M5SP 0.8GHz 252 1 252 2.3847 97.408 14,914 0.42839 22.2?|
Cray X1 MSP 0.8GHz 124 1 124 1.2054 39.525 14.973 0.70857 20.15|
Cray X1 MSP 0.8GHz &0 1 60 0.5087 1.634 0.003078 3.144 14.902 10.915 116779 141.66|
Cray T3E Alpha 21164 6T5GHz 512 1 512 0.2232 9.774 0.028946 15.477 0.532 0.661 0.03571 E.1d|
Cray XD1 AMD Opteron 2.2GHz 54 1 B4 0.2239 10.552 0.022337 16.361 2.656 4.034 0.22637 1.63|
Cray X1 MSP 8GHz 32 1 32 0.2767 32.661 0.001662 2.965 14.870 8.258 1.41269 ld.9d|
Figure 3: Sample results page.
PP-HPL
-l
PP-PTRANS T RandomRing Latency
i
|
/
|
I T :
SX-7
K } I 1 I I 1 I 1
K f T r T T T r T 1
PP-Randomicoess RandomRing Bandwidth
FP-FFTE 4 EN-DGENM

SN-STREAM Triad

Figure 4: Sample kiviat diagram of results for three generations of hardware from the same vendor (NEC).

web site. The results database is publicly available at
the aformentioned address and can be exported to Excel
spreadsheet or an XML file. Figure 4 shows a sample
kiviat diagram generated using the benchmark results.
Kiviat diagrams can be generated at the website and
allow easy comparitive analysis for multi-dimensional
results from the HPC Challenge database.

1

10 Conclusions

No single test can accurately compare the performance
of HPC systems. The HPC Challenge benchmark test
suite stresses not only the processors, but the memory
system and the interconnect. It is a better indicator of
how an HPC system will perform across a spectrum of
real-world applications. Now that the more compre-

1

hensive, informative HPC Challenge benchmark suite
is available, it can be used in preference to compar-
isons and rankings based on single tests. The real util-
ity of the HPC Challenge benchmarks are that archi-
tectures can be described with a wider range of metrics
than just flop/s from HPL. When looking only at HPL
performance and the Top500 List, inexpensive build-
your-own clusters appear to be much more cost effec-
tive than more sophisticated HPC architectures. Even
a small percentage of random memory accesses in real
applications can significantly affect the overall perfor-
mance of that application on architectures not designed
to minimize or hide memory latency. HPC Challenge
benchmarks provide users with additional information
to justify policy and purchasing decisions. We expect to
expand and perhaps remove some existing benchmark
components as we learn more about the collection.

11 Acknowledgments

The authors would like to thank Gerrit Schulz and
Michael Speck, student co-workers, who have imple-
mented parts of the software.

References

[1] High Productivity Computer Systems.

(http://www.highproductivity.org/).

[2] William Kahan. The baleful effect of computer
benchmarks upon applied mathematics, physics
and chemistry. The John von Neumann Lecture at
the 45th Annual Meeting of SIAM, Stanford Uni-
versity, 1997.

[3] Jack J. Dongarra, Piotr Luszczek, and Antoine Pe-
titet. The LINPACK benchmark: Past, present,
and future. Concurrency and Computation: Prac-
tice and Experience, 15:1-18, 2003.

[4] John McCalpin. STREAM: Sustainable Mem-
ory Bandwidth in High Performance Computers.

[6]

[7]

[8]

[9]

[10]

[11]

(http://www.cs.virginia.edu/stream/)12]

[5] Daisuke Takahashi and Yasumasa Kanada. High-
performance radix-2, 3 and 5 parallel 1-D com-
plex FFT algorithms for distributed-memory par-

12

allel computers. The Journal of Supercomputing,
15(2):207-228, 2000.

Jack J. Dongarra, J. Du Croz, lain S. Duff, and
S. Hammarling. Algorithm 679: A set of Level
3 Basic Linear Algebra Subprograms. ACM
Transactions on Mathematical Software, 16:1-17,
March 1990.

Jack J. Dongarra, J. Du Croz, lain S. Duff, and
S. Hammarling. A set of Level 3 Basic Linear Al-

gebra Subprograms. ACM Transactions on Math-
ematical Software, 16:18-28, March 1990.

Alice E. Koniges, Rolf Rabenseifner, and Karl
Solchenbach. Benchmark design for character-
ization of balanced high-performance architec-
tures. In Proceedings of the 15th International
Parallel and Distributed Processing Symposium
(IPDPS’01), Workshop on Massively Parallel Pro-
cessing (WMPP), volume 3, San Francisco, CA,
April 23-27 2001. In IEEE Computer Society
Press.

Rolf Rabenseifner and Alice E. Koniges. Effec-
tive communication and file-i/o bandwidth bench-
marks. In J. Dongarra and Yiannis Cotronis
(Eds.), Recent Advances in Parallel Virtual Ma-
chine and Message Passing Interface, Proceed-
ings of the 8th European PVM/MPI Users’ Group
Meeting, EuroPVM/MPI 2001, pages 24-35, San-
torini, Greece, September 23-26 2001. LNCS
2131.

Rolf Rabenseifner. Hybrid parallel programming
on HPC platforms. In Proceedings of the Fifth
European Workshop on OpenMP, EWOMP 03,
pages 185-194, Aachen, Germany, September 22-
26 2003.

Matteo Frigo and Steven G. Johnson. FFTW: An
adaptive software architecture for the FFT. In
Proc. 1998 IEEE Intl. Conf. Acoustics Speech and
Signal Processing, volume 3, pages 1381-1384.
IEEE, 1998.

Matteo Frigo and Steven G. Johnson. The design
and implementation of FFTW3. Proceedings of
the IEEE, 93(2), 2005. special issue on "Program
Generation, Optimization, and Adaptation”.

