
Global HPCC Benchmarks in Chapel

Brad Chamberlain, Steve Deitz, Samuel Figueroa,
David Iten, Andy Stone*

Cray Inc., *Colorado State University

SC08: HPC Challenge BOF
November 18, 2008

Chapel in a nutshell

Chapel:
• a new parallel language being developed by Cray Inc.

• part of DARPA’s HPCS* program

• first public release occurred this past weekend

*HPCS = High Productivity Computing Systems

When we last saw you at HPCC…

HPCC 2006: Chapel “elegance only” entry
• goal: show where Chapel was headed

• 3 benchmarks: STREAM Triad, Random Access, FFT

• written with elegance and scalability in mind

• compiled and executed correctly, but:

 only supported single-threaded execution

 leaked memory

 =>no performance

Chapel (3)

This year’s entry

 First public performance numbers for Chapel execution

 First distributed memory execution of our data parallel features

 As intended, our code is quite similar to 2006 entry

 First locality-sensitive implementation of HPL in Chapel

 This is a snapshot of a work in progress, not the final word

 Our first distribution ran for the first time only two months ago

Focus less on our current performance

and more on how we got it

Chapel (4)

Please set your expectations appropriately:

HPCC BOF, SC06

11,674

231
192156117

1406

1668

433

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Ref. Chapel Ref. Chapel Ref. Chapel Ref. Chapel

S
L

O
C

Reference Version

Framework

Computation

 Chapel Version

Prob. Size (common)

Results and output

Verification

Initialization

Kernel declarations

Kernel computation

Code Size Summary (SLOC)

STREAM

Triad

Random

Access
FFT HPL

Chapel is 3.7 – 50×

shorter; yet this is not

a fair comparison due

to multiple algorithms

in reference versions

STREAM Triad in Chapel

Chapel (7)

forall (a, b, c) in (A, B, C) do

a = b + alpha * c;

var A, B, C: [ProblemSpace] real;

constProblemSpace: domain(1, int(64)) distributedBlockDist

= [1..m];

constBlockDist = new Block1D(bbox=[1..m], tasksPerLocale=…);

constProblemSpace: domain(1, int(64))

= [1..m];

=

α ·

+

1 m

1 20-1 m

Chapel Distributions

Distributions: “Recipes for parallel, distributed arrays”
• help the compiler map from the computation’s global view…

…down to the fragmented, per-processor implementation

Chapel (8)

=

α ·

+

=

α ·

+

=

α ·

+

=

α ·

+

=

α ·

+

MEMORY MEMORY MEMORY MEMORY

Chapel Distributions

 (Advanced) Programmers can write distributions in Chapel

 Chapel will support a standard library of distributions
• research goal: using the same mechanism that users would

 Block1D is our first such distribution
• our compiler has no semantic knowledge of block distributions

• only of a distribution’s interface--how to…

…create domains and arrays using that distribution

…map indices to locales

…access array elements

…iterate over indices/array elements

• sequentially

• in parallel

• in parallel and zippered with other parallel iteratable types

…and so forth…

Chapel (9)

Experimental Platform

machine characteristic value

name jaguar

model Cray XT4

location ORNL

compute nodes 7,832

compute node processor 2.1 GHz AMD Opteron

cores per node 4

total user RAM per node 7.68 GB

Chapel (10)

STREAM Triadcharacteristic value

per-node problem size 85,985,408

per-node memory required 1.92 GB

percent of available memory 25.0%

Chapel STREAM Performance

Chapel (11)

1.69 TFlop/s

Why doesn’t Chapel scale perfectly?

 Because Block1D’s current parallel iterator is very naive…

 Ditto for its termination…

Chapel (12)

MEMORY

MEMORY

MEMORY

MEMORY

Strategies for improvement

 Use tree-based startup/teardown to convert O(p) to O(lgp)

 Or: Have compiler optimize code to use SPMD exec. model
• reduces O(lgp) to O(1) by amortizing into program startup/teardown

Chapel (13)

MEMORY

MEMORY

MEMORY

MEMORY

SPMD-style Chapel

 In the meantime, users can code in SPMD like the MPI version

using Chapel’s support for multiresolution programming:

varlocalGBs: [LocaleSpace] real;

coforall loc inLocales do

on loc {

constmyProblemSpace: domain(1, int(64))

= BlockPartition(ProblemSpace, here.id, numLocales);

varmyA, myB, myC: [myProblemSpace] real(64);

conststartTime = getCurrentTime();

local {

for (a, b, c) in (myA, myB, myC) do

a = b + alpha * c;

}

constexetTime = getCurrentTime() - startTime;

localGBs(here.id) = timeToGFlops(execTime);

}

constavgGBs = (+ reducelocalGBs) / numLocales;

Chapel (14)

SPMD Chapel Performance

Chapel (15)

RA Declarations in Chapel

Chapel (16)Chapel (16)

constTableSpace: domain(1, uint(64)) distributedTableDist = [0..m-1],

Updates: domain(1, uint(64)) distributedUpdateDist = [0..N_U-1];

constTableDist = new Block1D(bbox=[0..m-1], tasksPerLocale=…),

UpdateDist = new Block1D(bbox=[0..N_U-1], tasksPerLocale=…);

1 20-1 NUm

0 N_U-1

0 m-1

var T: [TableSpace] uint(64);

RA Computation in Chapel

Chapel (17)Chapel (17)

constTableSpace: domain(1, uint(64)) distributedTableDist = [0..m-1],

Updates: domain(1, uint(64)) distributedUpdateDist = [0..N_U-1];

0 N_U-1

var T: [TableSpace] uint(64);

forall (_, r) in (Updates, RAStream()) do

on T(r&indexMask) do

T(r&indexMask) ^= r;

r0 r1 r2 r3 r9 rN_U-1RAStream(): r17 r23

RA Performance in Chapel

Chapel (21)

FFT and HPL Status

 FFT :
• not yet running on distributed memory

 Block1D not yet rich enough to support slicing, re-indexing

• have made a big effort to reclaim descriptor memory from slicing

 can now run full problem size

 HPL:
• not yet running on distributed memory

 need to add block-cyclic, dimensional, and replicated distributions

• current version written to be locality-aware

 All four of these codes are very clean and should serve as

great references to others attempting the HPC Challenge

Chapel (22)

Acknowledgements

This material is based upon work supported by the Defense

Advanced Research Projects Agency under its Agreement

No. HR0011-07-9-0001.

This research used resources of the National Center for

Computational Sciences at Oak Ridge National Laboratory,

which is supported by the Office of Science of the U.S.

Department of Energy under Contract

No. DE-AC05-00OR22725

Thanks also to our many colleagues

who have helped us reach this point!

Chapel (23)

Summary

 Chapel is scaling on dist. memory machines, if not perfectly
• more importantly, scalability limiters are known and addressable

 Chapel achieved its first TeraFlop

 Chapel has started to demonstrate user-defined distributions
• Recall that these have only been working for two months

• (and a busy two months at that: first public release, two tutorials, …)

 See you at HPCC 2009!

In the meantime, download Chapel, try it out,

and please give us your feedback:

http://chapel.cs.washington.edu

(our HPCC codes and report are available within the release)

Chapel (24)

http://chapel.cs.washington.edu/

