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Chapel in a nutshell

Chapel:
• a new parallel language being developed by Cray Inc.

• part of DARPA’s HPCS* program

• first public release occurred this past weekend

*HPCS = High Productivity Computing Systems



When we last saw you at HPCC…

HPCC 2006: Chapel “elegance only” entry
• goal: show where Chapel was headed

• 3 benchmarks: STREAM Triad, Random Access, FFT

• written with elegance and scalability in mind

• compiled and executed correctly, but:

 only supported single-threaded execution

 leaked memory

 =>no performance
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This year’s entry

 First public performance numbers for Chapel execution

 First distributed memory execution of our data parallel features

 As intended, our code is quite similar to 2006 entry

 First locality-sensitive implementation of HPL in Chapel

 This is a snapshot of a work in progress, not the final word

 Our first distribution ran for the first time only two months ago

Focus less on our current performance

and more on how we got it
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Please set your expectations appropriately:
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STREAM Triad in Chapel
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forall (a, b, c) in (A, B, C) do

a = b + alpha * c;

var A, B, C: [ProblemSpace] real;

constProblemSpace: domain(1, int(64)) distributedBlockDist

= [1..m];

constBlockDist = new Block1D(bbox=[1..m], tasksPerLocale=…);

constProblemSpace: domain(1, int(64))  

= [1..m];

=
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Chapel Distributions

Distributions: “Recipes for parallel, distributed arrays”
• help the compiler map from the computation’s global view…

…down to the fragmented, per-processor implementation
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Chapel Distributions

 (Advanced) Programmers can write distributions in Chapel

 Chapel will support a standard library of distributions
• research goal: using the same mechanism that users would

 Block1D is our first such distribution
• our compiler has no semantic knowledge of block distributions

• only of a distribution’s interface--how to…

…create domains and arrays using that distribution

…map indices to locales

…access array elements

…iterate over indices/array elements

• sequentially

• in parallel

• in parallel and zippered with other parallel iteratable types

…and so forth…
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Experimental Platform

machine characteristic value

name jaguar

model Cray XT4

location ORNL

# compute nodes 7,832

compute node processor 2.1 GHz AMD Opteron

cores per node 4

total user RAM per node 7.68 GB

Chapel (10)

STREAM Triadcharacteristic value

per-node problem size 85,985,408

per-node memory required 1.92 GB

percent of available memory 25.0%



Chapel STREAM Performance
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1.69 TFlop/s



Why doesn’t Chapel scale perfectly?

 Because Block1D’s current parallel iterator is very naive…

 Ditto for its termination…
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Strategies for improvement

 Use tree-based startup/teardown to convert O(p) to O(lgp)

 Or: Have compiler optimize code to use SPMD exec. model
• reduces O(lgp) to O(1) by amortizing into program startup/teardown
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SPMD-style Chapel

 In the meantime, users can code in SPMD like the MPI version 

using Chapel’s support for multiresolution programming:

varlocalGBs: [LocaleSpace] real;

coforall loc inLocales do

on loc {

constmyProblemSpace: domain(1, int(64))

= BlockPartition(ProblemSpace, here.id, numLocales);

varmyA, myB, myC: [myProblemSpace] real(64);

conststartTime = getCurrentTime();

local {

for (a, b, c) in (myA, myB, myC) do

a = b + alpha * c;

}

constexetTime = getCurrentTime() - startTime;

localGBs(here.id) = timeToGFlops(execTime);

}

constavgGBs = (+ reducelocalGBs) / numLocales;
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SPMD Chapel Performance
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RA Declarations in Chapel
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constTableSpace: domain(1, uint(64)) distributedTableDist = [0..m-1],

Updates: domain(1, uint(64)) distributedUpdateDist = [0..N_U-1];

constTableDist = new Block1D(bbox=[0..m-1], tasksPerLocale=…),

UpdateDist = new Block1D(bbox=[0..N_U-1], tasksPerLocale=…);

1 20-1 NUm

0 N_U-1

0 m-1

var T: [TableSpace] uint(64);



RA Computation in Chapel
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constTableSpace: domain(1, uint(64)) distributedTableDist = [0..m-1],

Updates: domain(1, uint(64)) distributedUpdateDist = [0..N_U-1];

0 N_U-1

var T: [TableSpace] uint(64);

forall (_, r) in (Updates, RAStream()) do

on T(r&indexMask) do

T(r&indexMask) ^= r;

r0 r1 r2 r3 r9 rN_U-1RAStream(): r17 r23



RA Performance in Chapel
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FFT and HPL Status

 FFT :
• not yet running on distributed memory

 Block1D not yet rich enough to support slicing, re-indexing

• have made a big effort to reclaim descriptor memory from slicing

 can now run full problem size

 HPL:
• not yet running on distributed memory

 need to add block-cyclic, dimensional, and replicated distributions

• current version written to be locality-aware

 All four of these codes are very clean and should serve as 

great references to others attempting the HPC Challenge
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Summary

 Chapel is scaling on dist. memory machines, if not perfectly
• more importantly, scalability limiters are known and addressable

 Chapel achieved its first TeraFlop

 Chapel has started to demonstrate user-defined distributions
• Recall that these have only been working for two months

• (and a busy two months at that: first public release, two tutorials, …)

 See you at HPCC 2009!

In the meantime, download Chapel, try it out,

and please give us your feedback:

http://chapel.cs.washington.edu

(our HPCC codes and report are available within the release)
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http://chapel.cs.washington.edu/

