
IBM Research

© 2006 IBM Corporation

HPC Challenge 2006 Awards Competition:
xlUPC on BlueGene/L

C. Caşcaval, G. Almási, C. Barton, E. Tiotto
G. Dózsa, M. Farreras, P. Luk, T. Spelce

IBM Research, IBM SWG Toronto, and LLNL

IBM Research

© 2006 IBM Corporation2 HPC Challenge Awards Competition Class 2

Environment

● Benchmarks:
● HPL, FFT, Random Access and EP STREAM Triad

● Software
● An experimental version of the IBM xlUPC compiler
● An experimental version of the BG/L communication library

● Blue Gene characteristics & installations
● BG nodes (2 procs. each) have 4M L3 cache, 512 MB local
 memory; connected by a 3D torus, 175 MB/s/link

● Blue Gene/X – 1 rack, 2048 procs., 512 GB mem.
● Blue Gene/W – 20 racks, 40K procs., 10 TB mem.
● Blue Gene/L – 64 racks, 128K procs., 32 TB mem.

IBM Research

© 2006 IBM Corporation3 HPC Challenge Awards Competition Class 2

Global HPL

● UPC naïve version – nice and
simple code, low performance

● Optimizations:

● Calls to BLAS (ESSL in IBM speak) – we
introduced multi-dimensional blocking of
shared arrays

● Collective communication – critically
needed when scaling to thousands of
processors

● Added when UPC collectives
supported (e.g., broadcast in
backsolve)

● update requires broadcast on subset
of threads which is not supported in the
UPC specification

Lines NCSL File

48 11 30
89 26 48
52 12 35
43 25 24
50 13 30
45 16 23
45 24 15

101 49 55
63 22 28

536 198 288 Total

Cmnts

backsolve.upc
main.upc
matgen.upc
panel.upc
pivot.upc
swap.upc
tri_solve.upc
update.upc
hpl.h

IBM Research

© 2006 IBM Corporation4 HPC Challenge Awards Competition Class 2

Multidimensional blocked data distribution in UPC

M

N

shared [B][B] double A [M][N];● Syntax:

•Thread assigned to a[i][j]:

• Blocks are assigned sequentially, not in a
checkerboard layout

p i , j =⌊ i
B ⌋×⌈ N

B ⌉⌊ j
B ⌋ mod THREADS

new syntax

IBM Research

© 2006 IBM Corporation5 HPC Challenge Awards Competition Class 2

Performance bottlenecks

● Comp/comm ratio low
●upc_memget() calls overload the
 CPU that owns A[ii][k]

● Calls for collective communication
(and subsets of threads)

● No appropriate collective,

● No communicators in UPC

● Collectives should also be used
in: backsolve, triangular_solve,
outer_product, max_pivot

M

N

LU U

L

void update(int k){
 upc_forall (ii; jj; ... &A[ii][jj]){
 upc_memget (a, &A[ii][k], B*B*8);
 upc_memget (b, &A[k][jj], B*B*8);
 c = (double *)&A[ii][jj];
 dgemm(..., a, b, c ...);
}}

IBM Research

© 2006 IBM Corporation6 HPC Challenge Awards Competition Class 2

Performance

● Remaining issues
● Load balancing

● Communication overhead (collectives)

Matrix Size Efficiency

1 5000 1.47 52.50%

64 44000 47.17 26.32%

256 85000 117.87 16.44%

BlueGene Gflops
Procs

IBM Research

© 2006 IBM Corporation7 HPC Challenge Awards Competition Class 2

Global FFT - Complex 1-D Discrete Fourier Transform (DFT)

Conventional algorithm: two-dimensional
index mapping

– compute DFT of N columns

– multiply element (i,j) by WN*N
ij (twiddle factors)

– compute DFT of N rows

DFTs can be done independently (in parallel)

– Matrix tranpose may be needed to make
DFTs local

– FFTW library computes local DFTs

N

N

N

N

N
N

IBM Research

© 2006 IBM Corporation8 HPC Challenge Awards Competition Class 2

Global FFT – UPC code

Lines Blank Cmnts NCSL TP toks

 151 18 43 100 1018 fft.upc

 59 14 23 22 160 fft.h

 210 32 66 122 1168 Total

(121 24 23 75 637 verify.upc)

local_copy_input(X,A);

fftw_on_columns(A);

mult_by_twiddle(A);

transpose(A,Z);

fftw_on_rows(Z);

transpose(X,A);

fftw_on_columns(A);

mult_by_twiddle(A);

transpose(A,Z);

fftw_on_rows(Z);

transpose(Z,A);

fftv1: shared [N*N/THREADS] complex_t ComplexArray_t [N*N];

fftv2: shared [N/THREADS] complex_t ComplexArray_t [N*N];

fftv2fftv1

IBM Research

© 2006 IBM Corporation9 HPC Challenge Awards Competition Class 2

Performance analysis

Cross-section BW (64 x 32 x 32 torus)
2 wires/link x 32 x 32 x 2 links
Bandwidth =
 4096 x 0.25 Bytes/cycle x 700MHz =
 667 GBytes/s

Array size: 64 MBytes/thread

Data sent through cross-section
each transpose: 32 MBytes/thread

cpubytes = 32 MBytes/
 = 80 MBytes
totalbytes = cpubytes * threads =
 = 5120 GBytes

On 64 racks FFT performance is
limited by the cost of transposes

T
transpose

= totalbytes/BW = 7.68s
T

fftw
 = 1.8s;

T
twiddle

 = 1.7s;
T

total
 = 3 . T

transpose
 + 2 . T

fftw
 + T

twiddle

Performance =

fftv1 (3 transposes)

T
transpose

= totalbytes/BW = 7.68s
T

fftw
 = 3.4s;

T
twiddle

 = 2.2s;
T

total
 = T

transpose
 + 2 . T

fftw
 + T

twiddle

Performance =

fftv2 (1 transpose)

5×n×logn
T total

≤1843GFlops

5×n×logn
T total

≤3131GFlops

IBM Research

© 2006 IBM Corporation10 HPC Challenge Awards Competition Class 2

FFT Performance

Array Arrays fftv1 fftv2
Racks Elements

1 2048 2^32 0.13 51.29 54.29

4 8192 2^34 0.5 124.81 198.93

16 16384 2^36 2 512.70 742.90

64 65536 2^38 8 1115.00 N/A

BlueGene
Procs TBytes Gflops GFlops

IBM Research

© 2006 IBM Corporation11 HPC Challenge Awards Competition Class 2

Random Access

● Each update is a packet
●Performance limited by latency, cross-section bandwidth

● Compiler optimization:
●Identify remote update operations

● Verification: run the algorithm twice

● Changes since last year: optimized packet size

● Lines of code: 107

u64Int ran = starts(NUPDATE/THREADS * MYTHREAD);

upc_forall (i = 0; i < NUPDATE; i++; i) {

 ran = (ran << 1) ^ (((s64Int) ran < 0) ? POLY : 0);

 Table[ran & (TableSize-1)] ^= ran;

}

IBM Research

© 2006 IBM Corporation12 HPC Challenge Awards Competition Class 2

Theoretical GUPS limit on 64 rack BlueGene system

{{Packet size:42 Bytes

Wire speed: 4
cycles
 Byte }168

cycles
packet

CPU speed: 700 MHz =1.4
ns
cycle

} P=4.16⋅106 packets
second⋅link

Cross-section bandwidth:
64 x 32 x 32 torus:
2 wires/link x 32 x 32 x 2 (torus) = 4096 links
BW = 4096 . 4.16 . 106 = 17 .109 packets/s

Half of all packets travel across the cross-section
Theoretical limit = 34 GUPS

12 Byte header
4 Bytes opcode, type
4 Bytes target SVD
4 Bytes offset
8 Bytes update value
10 Bytes CRC + CF

Update packets:

42 Bytes on wire

One packet per update (naïve algorithm!)

32

32

64

IBM Research

© 2006 IBM Corporation13 HPC Challenge Awards Competition Class 2

Random Access: Performance Results

GUPS GUPS
Racks TB 2005 2006

1 2048 0.25 0.56 0.58

2 4096 0.5 1.11 1.15

4 8192 1 1.70 2.28

8 16384 2 3.36 4.49

16 32768 4 6.10 8.83

32 65536 8 11.54 14.80

64 131072 16 16.72 28.30

BlueGene Mem
Procs

IBM Research

© 2006 IBM Corporation14 HPC Challenge Awards Competition Class 2

Thank you!

IBM Research

© 2006 IBM Corporation15 HPC Challenge Awards Competition Class 2

Backup

IBM Research

© 2006 IBM Corporation16 HPC Challenge Awards Competition Class 2

Global HPL Basics (Panel Factorization)

● Code:
● Follow dgetrf() floor plan

● blocked factorization
● Parallelize inner loops

● blocks local to threads
● Comm. granularity: block

● Data:
● Need 2-D blocked distribution

● Block locality, load balance
● UPC syntax doesn't allow it!
● ... so we extended UPC

void parallel_panel () {
 for (k=...; k+=B) {
 panel (k, piv);
 swap_rows(k, piv);
 triangular_solve(k);
 update(k);
 }
}

void panel(col0, piv) {
 for (k = col0; ...) {
 pivotRow = max_pivot(k);
 piv[k] = pivotRow;
 scale_column(k,pivotRow);
 swap_row(pivotRow);
 outer_product(k);
 }
}

IBM Research

© 2006 IBM Corporation17 HPC Challenge Awards Competition Class 2

FFT – Matrix transpose
All-to-all communication pattern

– bottleneck for Blue Gene

Blocked transpose

– blocksize B = N / THREADS

Each thread gets one B x B block
from each other threads using
upc_memgets

– no strided access with upc_memget

– we need B memgets for each block

Each block is tranposed in place at
the destination

B

N

B

Thread #1

Thread #2

m
em

ge
t

m
em

ge
t

IBM Research

© 2006 IBM Corporation18 HPC Challenge Awards Competition Class 2

FFT – Matrix transpose: the code

upc_forall (i = 0; i < N; i += bsize; &B[i*N])

 for (j = 0; j < N; j += bsize) {

 // copy block to dest row by row
 complex_t * lb = (complex_t *)&B[i*N+j];

 for (unsigned k = 0; k < bsize; k++)

 upc_memget(lb + k*N, &A[(j+k)*N + i], sizeof(complex_t) * bsize);
 // transpose block in place

 for (unsigned k = 0; k < bsize - 1; k++)

 for (unsigned l = k + 1; l < bsize; l++) {
 complex_t c = lb[k*N+l];

 lb[k*N+l] = lb[l*N+k];

 lb[l*N+k] = c;
 }

 }

Transpose of A->B, shared arrays of N*N interpreted as (N, N) matrices

IBM Research

© 2006 IBM Corporation19 HPC Challenge Awards Competition Class 2

FFT – Multiplication by twiddle factors

void multByTwiddleFactors(ComplexArray_t Z)

{

 for (ArrayIndex_t i = 0; i < N; i++)

 upc_forall (ArrayIndex_t j = 0; j < N; j++; &Z[i*N+j])

 {

 double x = (2 * M_PI * i * j) / (N * N);

 double tw_re = cos(x), tw_im = -sin(x);

 Z[i*N+j].re = tw_re * Z[i*N+j].re - tw_im * Z[i*N+j].im;

 Z[i*N+j].im = tw_im * Z[i*N+j].re + tw_re * Z[i*N+j].im;

 }

}

● Z : shared array of N*N interpreted as (N, N) matrix

● multiplication of element (i,j) by Wij

N*N
, where

Wij

N*N
 = e-2π*i*j/N*N

IBM Research

© 2006 IBM Corporation20 HPC Challenge Awards Competition Class 2

EP Stream Triad

● Embarrassingly parallel: performance is gated by the
individual node memory bandwidth

● Important compiler optimization:
●Identify shared array accesses that have affinity to the
accessing thread; transform them into local accesses

● Verification: random sampling

● Lines of code: 90

upc_forall (i = 0; i < VectorSize; i++; i) {

 a[i] = b[i] + alpha * c[i];

}

IBM Research

© 2006 IBM Corporation21 HPC Challenge Awards Competition Class 2

EP STREAM Triad – Performance Results

Processors Problem Size Memory Used GB/s

2048 11,453,246,122 256 GB 1432.70

4096 22,906,492,245 500 GB 2865.35

8192 45,812,984,490 1 TB 5730.41

16384 91,625,968,981 2 TB 11460.65

32768 183,251,937,962 4 TB 22920.70

131072 733,007,751,850 16 TB 91627.49

