

IBM Research

HPC Challenge 2005 Awards Competition: UPC on BlueGene/L

C. Caşcaval, C. Barton, G. Almási, Y. Zheng, M. Farreras, P. Luk, R. Mak IBM Research and IBM SWG Toronto

© 2005 IBM Corporation

Environment

Blue Gene characteristics & installations

- BG nodes (2 procs. each) have 4M L3 cache, 512 MB local memory; connected by a 3D torus, 175 MB/s/link
- •Blue Gene/X 1 rack, 2048 procs., 512 GB mem.
- •Blue Gene/W 20 racks, 40K procs., 10 TB mem.
- •Blue Gene/L 64 racks, 128K procs., 32 TB mem.

Software

- •An experimental version of the IBM XL UPC compiler
- •An experimental version of the BG/L communication library

Benchmarks:

Random Access and EP STREAM Triad

Random Access

```
u64Int ran = starts(NUPDATE/THREADS * MYTHREAD);
upc_forall (i = 0; i < NUPDATE; i++; i) {
  ran = (ran << 1) ^ (((s64Int) ran < 0) ? POLY : 0);
  Table[ran & (TableSize-1)] ^= ran;
}
```

- Each update is a packet performance is limited by network latency
- Important compiler optimization:
 - Identify update operations
 - •Translate them to one sided update in comm. library
- Verification: run the algorithm twice
- Lines of code: 111

Random Access: Performance Results

Processors	Problem Size 2^N	GUPS	Efficiency
1	22	0.00054	
2	22	0.00078	73%
64	27	0.02000	61%
2048	35	0.56000	51%
65536	40	11.54000	33%
131072	41	16.72500	23%

Δ

Random Access – Power of 2 Optimization

5

EP Stream Triad

- Embarrassingly parallel: performance is gated by the individual node memory bandwidth
- Important compiler optimization:
 - Identify shared array accesses that have affinity to the accessing thread; transform them into local accesses
- Verification: random sampling
- Lines of code: 105

EP STREAM Triad – Performance Results

Processors	Problem Size	Memory Used	GB/s
1	2,000,001	45 MB	0.73
2	2,000,001	45 MB	1.46
64	357,913,941	8 GB	46.72
2048	11,453,246,122	256 GB	1472.00
65536	366,503,875,925	8 TB	47830.00
131072	733,007,751,850	16 TB	95660.00

7

Discussion

• We focused on the simplicity of code and on compiler and runtime optimizations, **not** on algorithmic changes

• Most challenging issues:

- •Overcome limitations in compiler indexing decisions and scaling the UPC runtime system to the max. machine size
 - How to index a 16 TByte array on a 32 bit machine?
- •Obtaining single node performance comparable to C
 - •Eliminate the shared memory translation overhead
- Reduce one-sided communication latency
 - •Naïve UPC code tends to generate short messages

Acknowledgments

• A long list of people, in particular:

- Roch Archambault
- Jose Castanos
- Siddhartha Chatterjee
- John Gunnels
- Manish Gupta
- Roland Koo
- Fred Mintzer
- •Tom Spelce (LLNL)

• Work supported in part by the DARPA HPCS Program, contract NBCH30390004

10

Nov. 15, 2005

Backup: Theoretical GUPS limit on large configuration Pre-condition: one packet per update (naïve algorithm)

Update packets:

16 Byte header 4 Bytes target SVD 4 Bytes offset 4 Bytes op type,kind 8 Bytes update value Packet size: 64 Bytes 75 Bytes on wire

11

$$\begin{cases} Packet \ size: 75 \ Bytes \\ Wire \ speed: 4 \ \frac{cycles}{Byte} \\ \end{cases} \rightarrow 300 \frac{cycles}{packet} \\ packet \\ Pu \ speed: 700 \ MHz = 1.4 \frac{ns}{cycle} \\ \end{cases} \rightarrow 2.38 \cdot 10^{6} \ \frac{packets}{second \cdot link}$$

Cross-section bandwidth:

64 x 32 x 32 torus:

2 wires/link x 32 x 32 x 2 (torus) = 4096 links

 $= 9.74^{\circ}10^{\circ}$ packets/s

Half of all packets travel across the cross-section; GUPS limit = **19.5**